研究生: |
徐源岱 Hsu, Yuan-Tai |
---|---|
論文名稱: |
應用於交錯嘎比杜林碼解碼之改良線性移位暫存器合成演算法 An Improved Linearized Shift-Register Synthesis Algorithm for Decoding Interleaved Gabidulin Codes |
指導教授: |
趙啟超
Chao, Chi-Chao |
口試委員: |
林茂昭
Mao-Chao Lin 陸曉峯 Hsiao-feng (Francis) Lu 楊谷章 Guu-Chang Yang 趙啟超 Chi-Chao Chao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 31 |
中文關鍵詞: | 網路編碼 、錯誤控制 、秩度量 、嘎比杜林碼 |
外文關鍵詞: | network coding, error control, rank metric, Gabidulin codes |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嘎比杜林碼和交錯嘎比杜林碼被運用於網路錯誤控制中。現今的解碼法主要依靠線性移位暫存器合成演算法。合成演算法的優勢在於可以超過解碼半徑,但是隨著交錯程度越高,解碼延遲也越嚴重。在本篇論文中,我們提出了一個改良的線性移位暫存器合成演算法,使得不會有解碼延遲的現象發生。接著我們架構了一個簡單的網路模型去比較我們與前人演算法之優劣,模擬結果顯示我們的演算法只犧牲些許錯誤率便取得即時解碼的優勢。
Gabidulin codes and interleaved Gabidulin codes are rank-metric codes mainly used in network error correction and distributed storage. The current decoding algorithm for both codes relies on linearized shift register (LSR) synthesis algorithm. The advantage of such algorithm is that it can decode error words beyond the decoding radius. However, it also suffers from a large decoding delay as the interleaved degree increases. In this thesis, we try to improve the LSR synthesis algorithm in such a way that the corresponding decoding algorithm for interleaved Gabidulin codes incurs no extra decoding delay and can be executed in real time. We then devise a simple network model for testing the performance of our decoding algorithm versus the traditional one. Simulation shows that our algorithm only comes with a little performance loss.
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.
[2] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in random network coding,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3579–3591, Aug. 2008.
[3] R. M. Roth, “Maximum-rank array codes and their application to crisscross error correction,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 328–336,Mar. 1991.
[4] E. M. Gabidulin, “Theory of codes withmaximumrank distance,” Probl. Peredachi Inf., vol. 21, no. 1, pp. 3–16, Jul. 1985.
[5] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric approach to error control in randomnetwork coding,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 3951–3967,
Sep. 2008.
[6] G. Richter and S. Plass, “Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm,” in Proc. ITG Conf. Source and Channel Coding, Erlangen, Germany, Jan. 2004, pp. 249–256.
[7] V. Sidorenko andM. Bossert, “Decoding interleaved Gabidulin codes and multisequence linearized shift-register synthesis,” in Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, Jun. 2010, pp. 1148–1152.
[8] H. Kurzweil, M. Seidl, and J. B.Huber, “Reduced-complexity collaborative decoding of interleaved Reed-Solomon and Gabidulin codes.” in Proc. IEEE Int. Symp. Inf.
Theory, St. Peterburg, Russia, Jul. 2011, pp. 2557–2561.
[9] R. Lidl and H. Niederreiter, Finite Fields, 2nd ed. New York: Cambridge University Press, 1997.
[10] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.
[11] V. Skacheck and R.M. Roth, “Probabilistic algorithm for finding roots of linearized polynomials,” Des., Codes and Cryptography, vol. 46, no. 1, pp. 17–23, 2008.
[12] R. Roth, Introduction to Coding Theory. New York: Cmbridge University Press, 2006.
[13] V. Sidorenko, G. Richter, and M. Bossert, “Linearized shift-register synthesis,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6025–6032, Sep. 2011.
[14] G. Schmidt and V. R. Sidorenko, “Multi-sequence linear shift-register synthesis: The varying length case,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle, USA, Jul. 2006, pp. 1738–1742.
[15] P. Loidreau and R. Overbeck, “Decoding rank errors beyond the error-correction capability,” in Proc. 10th Int. Workshop Algebraic Combinatorial Coding Theory (ACCT-10), Zvenigorod, Russia, Sep. 2006.
[16] J. L.Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.
[17] R. Koetter andM. Médard, “An algebraic approach to network coding,” IEEE Trans. Inf. Theory, vol. 11, no. 5, pp. 782–795, Oct. 2003.
[18] T. Ho,M.Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random linear network coding approach to multicast,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.