簡易檢索 / 詳目顯示

研究生: 林志軒
Lin, Chih-Hsuan
論文名稱: 高功率皮秒摻鐿光纖脈衝雷射之研究 (Generation of High Power Picosecond Pulses by a Ytterbium-Doped Fiber Laser System)
Generation of High Power Picosecond Pulses by a Ytterbium-Doped Fiber Laser System
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 趙如蘋
Pan, Ru-Pin
和田修
Osamu Wada
賀清華
Her, Tsing-Hua
潘犀靈
Pan, Ci-Ling
施宙聰
Shy, Jow-Tsong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 74
中文關鍵詞: 摻鐿光纖雷射超快脈衝
外文關鍵詞: Ytterbium-Doped fiber, laser, ultra-short pulses
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Material processing with lasers has already been shown to be a superior tool for different industrial applications. In this thesis, we developed a pulsed fiber-based high-power laser for material processing. First, we designed and constructed a diode-pumped passive mode-locked Nd:GdVO4 seed laser. It output is amplified in a 7m-long ytterbium-doped fiber so that the average power is as high as 28W. We then use the nonlinear crystal KTP for frequency doubling to generate 4.3W of green light. The experimental data are in good agreement with theoretical and simulation results.


    雷射在不同的工業中已被廣泛的應用。本論文是研發一種適用於以材料加工的高功率脈衝式光纖雷射。首先,我們設計及架設一台皮秒級,雷射二極體泵浦之被動鎖模Nd:GdVO4種子雷射(波長=1064nm)。其輸出經摻鐿光纖放大,平均功率達28W (重複率≅250MHz)。接著,利用KTP晶體倍頻可產生波長為532nm,功率高達4.3W的綠光。實驗結果,也與理論模擬相吻合。

    摘要 I Introduction II 致謝 III Table of Contents IV List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Thesis highlights 4 Chapter 2 Principle of laser system 6 2.1 Diode-Pumped Solid-State Laser 6 2.1.1 Passive Mode-Locking 6 2.1.2 Saturable Abosrber 7 2.2 Fiber Amplifier 8 2.2.1 Doped Fiber Amplifier 8 2.2.2 Pumping wavelength for active fiber 9 2.2.3 Amplified Spontaneous Emission 11 2.3 Nonlinear Crystal for Frequency Doubling 12 2.3.1 Second Harmonic Generation (SHG) 12 2.3.2 Influence of Conversion efficiency 14 Chapter 3 Experimental Methods 17 3.1 Master Oscillator Fiber Amplifier System 17 3.2 Theoretical investigation on diode-pump solid-state oscillator 18 3.3 Theoretical investigation on ytterbium-doped fiber amplifier and laser 23 3.4 Dual Wavelength pumping of a Yb-doped fiber amplifier at 915 nm and 976 nm 30 3.4.1 Introduction 30 3.4.2 Simulation of amplifier performance at different pumping wavelengths 31 Chapter 4 Experimental Measurement 35 4.1 Introduction 35 4.2 Diode-Pumped Solid-State Laser 35 4.3 Pumping wavelength and Yb-doped fiber amplifier 40 4.3.1 Improvement of spectral broadening and beam quality 45 4.3.2 Black-Box Method for gain spectrum 54 Chapter 5 Results and Discussions 58 5.1 Frequency doubling 58 5.1.1 PPLN and PPLST Crystal 59 5.1.2 Preliminary results with KTP and LBO Crystals 61 5.1.3 KTP Crystal 62 5.2 Discussions 65 Chapter 6 Conclusions 68 References 70

    1. www.ipgphotonics.com
    2. www.trumpf.com
    3. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tunnermann, “High Average Power Large-Pitch Fiber Amplifier With Robust Single-Mode Operation,” Optics Letters, 36(5), 689-691 (2011).
    4. J. Theime, “Fiber Laser New Challenges For The Materials Processing,” Laser Technik Journal, (3), 58-60 (2007)
    5. R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron, 33(7), 1049-1056 (1997)
    6. L. Goldberg, J. P. Koplow, R. P. Moeller, “High-Power Superfluorescent Source With A Side-Pumped Yb-Doped Double-Cladding Fiber,” Optics Letters, 23(13), 1037-1039 (1998)
    7. Y. Zhang, S. Zhao, D. Li, K. Yang, G. Li, G. Zhang, K. Cheng, “Diode-Pumped Doubly Q-switched Mode-Locked YVO4/Nd:YVO4 Laser With AO And GaAs Saturable Absorber,” Optic Communications, 283(24), 5121-5125 (2010)
    8. Y. P. Zhang, X. D. Zhao, H. Y. Zhang, L. H. Meng, L. Li, X. F. Li, P. Wang, J. Q. Yao,” High-Power Continuous Wave Green Beam Generation By Use Of Simple Linear Cavity With Side-Pumped Module,” Optic Communications, 283(24), 5161-5164 (2010)
    9. C. J. Koester, E. Snitzer, “Amplification In A Fiber Laser,” Applied Optics, 3(10), 1182-1186 (1964)
    10. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources For The 1–1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron, 1(1), 2-13 (1995)
    11. P. Myslinski, J. Chrostowski, J. A. Koningstein, J. R. Simpson, “High-Power Q-switched Erbium Fiber Laser,” IEEE J. Quantum electron, 28(1), 371-377 (1992)
    12. J. Y. Allain, M. Monerie, H. Poignant, “Ytterbium-Doped Fluoride Fibre Laser Operating At 1.02 μm,” Electron. Lett, 28(11), 988-989 (1992)
    13. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E. B. Kley, H. Zellmer, A. Tünnermann, “High-Power Femtosecond Yb-Doped Fiber Amplifier,” Optics Express, 10(14), 628-638 (2002)
    14. N. P. Barnes, B. M. Walsh, “Amplified Spontaneous Emission – Application To Nd:YAG Lasers”, IEEE J. Quantum Electron, 35(1), 101-109 (1999)
    15. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation Of Optical Harmonics”, Phys. Rev. Lett, 7(4), 118-119 (1961)
    16. Nonlinear Optics, Robert W. Boyd, Academic Press,1992
    17. Fundamentals Of Photonics, Saleh & Teich, John Wiley Sons, 1991
    18. Optical Waves In Crystals, Ammon Yariv And Pochi Yeh, John Wiley & Sons
    19. Handbook Of Nonlinear Optical Crystals, V G Dmitriev, G G Gurzadyan, D N Nikogosyan, Springer
    20. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable Concept For Diode-Pumped High-Power Solid-State Lasers,” Applied Physics B, 58(5), 365-372 (1994)
    21. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, M. T. Asom, “Solid-State Low-Loss Intracavity Saturable Absorber For Nd:Ylf Lasers: An A-Fpsa,” Opt. Lett., 17(7), 505-507 (1992)
    22. U. Keller, “Recent Developments In Compact Ultrafast Lasers,” Nature, 424(6950), 831-838 (2003)
    23. J. L. He, C. K. Lee, J. Y. J. Huang, S. C. Wang, C. L. Pan, And K. F. Huang, “Diode-Pumped Passively Mode-Locked Multi Watt Nd:GdVO4 Laser With A Saturable Bragg Reflector,” Appl. Opt, 42(27), 5496-5499 (2003)
    24. S. Zhang, E. Wu, H. Pan, H. Zeng. “Passive Mode Locking In A Diode-Pumped Nd:GdVO4 Laser With A Semiconductor Saturable Absorber Mirror,” IEEE J. Quantum Electron, 40(5), 505-508 (2004)
    25. Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, K. F. Huang. “Diode-End-Pumped Passively Mode-Locked High-Power Nd:YVO4 Laser With A Relaxed Saturable Bragg Reflector,” Optics Letters, 26(4), 199-201 (2001)
    26. J. K. Jabczyński, W. Żendzian, J. Kwiatkowski. “CW Mode Locked Nd:YVO4 Laser Pumped By 20-W Laser Diode Bar,” Opto-Electronics Review, 14(2), 135-139 ( 2006)
    27. D. Kousnetsov, J. V. Moloney, “Efficiency Of Pump Absorption In Double-Clad Fiber Amplifiers,” J. Opt. Soc. Am. B, 19(6), 1259-1263 (2002)
    28 C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, “Analytical Model For Rare-Earth-Doped Fiber Amplifiers And Lasers,” IEEE J Quantum Electronics, 30(8), 1817-1830 (1994)
    29. J. Tang, G. Zhao, X. He, W. Li, “Theoretical Investigation On All-Fiber Yb-Doped Pulse Amplifier In The Case Of Weak Feedback,” International Journal for Light and Electron Optics, 122(16), 1445-1447 (2010)
    30. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, R. V. Penty, “158-J Pulses From A Single-Transverse-Mode, Large-Mode-Area Erbium-Doped Fiber Amplifier,” Opt. Lett, 22(6), 378-380 (1997)
    31. R. I. Laming, S. B. Poole, E. J. Tarbox, “Pump Excited-State Absorption In Erbium-Doped Fibers,” Opt. Lett, 13(12), 1084-1086 (1988)
    32. M. J. F. Digonnet, C. J. Gaeta, “Theoretical Analysis Of Optical Fiber Laser Amplifiers And Oscillators,” Appl. Opt., 24(3), 333-342 (1985)
    33 R. Paschotta, Field Guide To Optical Fiber Technology, Spie Press, Bellingham, Wa (2010)
    34. A. Zaytsev, C. L. Wang, C. H. Lin, C. L. Pan, "Experimental Study Of Fiber Based Mopa System With Mode-Locked Dpss Seed Laser,” 28th Symposium On Spectroscopic Technologies And Surface Sciences, 013
    35. C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, K. Ueda, “Diode-Pumped Passively Q-Switched Nd:Gdvo4 Lasers Operating At 1.06 Μm Wavelength,” Appl. Phys. B, 70(4), 471-474 (2000)
    36. J. L. He, C. K. Lee, Jung. Y, J. Huang, S. C. Wang, C. L. Pan, K. F. Huang, “Diode-Pumped Passively Mode-Locked Multi Watt Nd:Gdvo4 Laser With A Saturable Bragg Reflector,” Applied Optics, 42(27), 5496-5499 (2003)
    37. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, “Q-switching Stability Limits Of Continuous-Wave Passive Mode Locking,” Josa B, 16(1), 46-56 (1999)
    38. J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, M. Jiang, “High-Power Actively Q-switched Nd:GdVO4 Laser End-Pumped By A Fiber-Coupled Diode-Laser Array” , Opt. Comm. 188(1-4), 155-162 (2001)
    39. E. V. Vanin, “Spectral Functional Forms For Gain And Noise Characterization Of Erbium-Doped Fiber Amplifiers,” J. Lightwave Technology, 20(2), 243-249 (2002)
    40. J. Gunnar, P. Ulf, Method of characterising optical amplifiers,” European Patent 00121567.2
    41. J. A. L. Villa, F. B. Bo, V. P. Querol, A. L. Teixeira, “Extended Black-Box Model For Fiber Length Variation Of Erbium-Doped Fiber Amplifiers,” IEEE PTL, 20(4), 2063-2065 (2008)
    42. R. D. Muro, N. Jolley, Steve Wilson, Joe Mun, “Experimental Correlation Of The Extended-Band Edfa With An Optimized Numerical Model Using A Dynamic Gain Tilt Technique,” IEEE PTL, 12(9), 1159-1161 (2000)
    43. A. A. Rieznik , G. S. Wiederhecker , T. P. Mayer Alegre, H. L. Fragnito, “Determination Of Er-fibre L-Band Gain Coefficient From Measured Ase Spectra,” 2002 IEEE Leos Europe Meeting
    44. H. M. Pask, “Ytterbium-doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J Selected Topics in Quantum Electrunics, 1(1) , 2-13 (1995)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE