簡易檢索 / 詳目顯示

研究生: 林乾
Lin, Chien
論文名稱: 擬埃爾米特流型上的幾何分析
Geometric Analysis in Pseudohermitian Manifolds
指導教授: 張樹城
Chang, Shu-Cheng
宋瓊珠
Sung, Chiung-Jue
口試委員: 張德健
Chang, Der-Chen
高淑蓉
Kao, Shu-Jung
吳進通
Wu, Chin-Tung
郭庭榕
Kuo, Ting-Jung
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 108
中文關鍵詞: 擬埃爾米特流型梯度估計Yau一致性猜想維度估計三圓定理
外文關鍵詞: Pseudohermitian Manifolds, Gradient estimate, Yau's uniformization conjectures, Dimension estimate, Three-circle theorem
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇博士論文主要包含三部分. 第一部分討論在擬埃爾米特流形上Li-Yau的梯度估計. 後面兩部分主要是討論Yau均值化定理於CR流形上的推廣. 其內容可以概述如下.
    首先,我們將於第一章介紹擬埃爾米特流形中的基本概念與符號.
    在接續下來的第二章節中,從CR Bôchner 公式,可以推得廣義曲率維度不等式,進而可以用Cao-Yau的方法,推出在擬埃爾米特流形上Li-Yau的梯度估計. 其方法不僅提供了更精確的Li-Yau梯度估計且允許擬埃爾米特的扭度非零. 作為Li-Yau的梯度估計的應用,我們有CR Harnack不等式以及CR 熱核上界估計. 此外,在廣義曲率維度不等式的假定下,我們把Cao-Yau梯度估計推廣到高階的情況.
    第三章中,我們首先給出CR熱方程解的存在性與唯一性的一個充分條件. 經由選定適宜的初始條件,考慮CR熱方程的解及CR單調公式,可使我們得到CR粗略維度估計. 若把證明過程中的估計更加細緻化, 則我們可以得到CR最佳維度估計.
    於第四章初始,我們先給出CR subhessian比較定理; 作為其第一個應用,可以得到CR subLaplacian比較定理. 由CR subhessian比較定理, 我們亦可以得出這章節的主要定理-CR三圓定理. 作為CR三圓定理的推論, 我們得到兩個CR 最佳單調公式與CR最佳維度估計及其剛性定理.


    The thesis consists of three topics mainly. One is about the CR Li-Yau gradient estimate. The latter ones are concerned with the CR analogues of Yau's uniformization problems. They could be briefly described as follows.
    In Chapter 1, we introduce the basic notions in pseudohermitian geometry and the necessary notations adopted in the later chapters.
    In Chapter 2, we first derive the generalized curvature-dimension inequality with the help of the CR Bochner formula. Then it enables us to derive the CR Li-Yau gradient estimate for positive solutions to CR heat equation by modifying the Cao-Yau's method. Actually Cao-Yau's method not only provides a new way to obtain more precise gradient estimate than before but allows the pseudohermitian torsion to be nonvanishing. As applications, we have the CR version of Li-Yau Harnack inequality and upper bound estimate for the CR heat kernel. And, under the assumption of the generalized curvature-dimension inequality, we are able to confirm the Li-Yau gradient estimate for the sum of squares of vector fields up to higher step.
    In Chapter 3, we give a sufficient condition of the existence of the solution to CR heat equation to ensure its solution could be expressed in the convolution of the initial data with the CR heat kernel. Subsequently, by taking the appropriate initial condition of CR heat equation, we can get the rough dimension estimate. If modifying the estimate about the vanishing order of CR-holomorphic functions utilized in the rough dimension estimate, we are able to obtain the sharp dimension estimate.
    In Chapter 4, we first deduce the CR subhessian comparison; as a byproduct, it enables us to obtain the CR subLaplacian comparison. And then we derive the CR three-circle theorem. As applications, it enables us to deduce two CR sharp monotonicity formulas and the CR sharp dimension estimate with its rigidity.

    Contents i 1 Preliminary 1 2 Li-Yau Gradient Estimate for the Sum of Squares of Vector Fields up to Higher Step 9 2.1 Introduction 9 2.2 Generalized Curvature-Dimension Inequalities 17 2.3 CR Li-Yau Gradient Estimate 21 2.4 Li-Yau Gradient Estimate for the Sum of Squares of Vector Fields 30 3 Sharp Dimension Estimate of CR Holomorphic Functions in Sasakian Manifolds 43 3.1 Introduction 43 3.2 CR Heat Equation 49 3.3 Rough Dimension Estimate 55 3.4 Sharp Dimension Estimate 62 3.5 Appendix 70 4 Three-Circle Theorem and Its Applications in Sasakian Manifolds 75 4.1 Introduction 75 4.2 CR Three-Circle Theorem 80 4.3 An Extension of CR Three-Circle Theorem 92 Bibliography 99

    1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Volume 203, Birkhauser 2002.
    2. D. Bakry, F. Baudoin, M. Bonnefont and B. Qian, Subelliptic Li-Yau estimates on three dimensional model spaces, Potential theory and stochastics in Albac, 1--10, Theta Ser. Adv. Math., 11, Theta, Bucharest, 2009.
    3. F. Baudoin, M. Bonnefont, N. Garofalo and I. Munive, Volume and distance comparison theorems for sub-Riemannian manifolds, J. Funct. Anal. 267(2014) 2005-2027.
    4. D. Bakry and M. Emery, Diffusions hypercontractives. (French) [Hypercontractive diffusions] Seminaire de probabilite, XIX, 1983/84, 177--206; Lecture Notes in Math., 1123, Springer, Berlin, 1985.
    5. F. Baudoin and N. Garofalo, Curvature-dimension Inequalities and Ricci Lower Bounds for sub-Riemannian Manifolds with Transverse Symmetries, arXiv:1101.3590v5, Oct. 4, 2014.
    6. Laurent Saloff-Coste, Aspects of Sobolev-Type Inequalities, Cam. Uni. Press (2002).
    7. H.-D. Cao, On Harnack inequalities for the Kähler-Ricci flow, Invent. Math., 109 (1992), 247-263.
    8. S.-C. Chang, H.-L. Chiu, Nonnegativity of CR Paneitz operator and its applications to the CR Obata's theorem, J. Geom. Anal. 19(2009), 261-287.
    9. S.-C. Chang, T.-H. Chang and Y.-W. Fan, Linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-Laplacian heat equation, J. Geom. Anal. 25 (2015), no. 2, 783-819.
    10. D.-C. Chang, S.-C. Chang, Y.-B. Han and C. Lin, On the CR Poincaré-Lelong equation, Yamabe steady solitons and structures of complete noncompact Sasakian manifolds, 2017, to appear in Acta Mathematica Sinica, English Series, 2018, a special issue in several complex variables in memory of Prof. Qikeng Lu.
    11. D.-C. Chang, S.-C. Chang, Y.-B. Han and J.-Z. Tie, A CR Analogue of Yau's Conjecture On Pseudoharmonic Functions of Polynomial Growth, 2017, to appear in Canadian Journal of Mathematics.
    12. D.-C. Chang, S.-C. Chang, T.-J. Kuo, and S.-H. Lai, CR Li-Yau Gradient Estimate and Entropy Formulae for Witten Laplacian via Bakry-Emery pseudohermitian Ricci curvature, to appear in Asian J. Math.
    13. D.-C. Chang, S.-C. Chang and C. Lin, On Li-Yau gradient estimate for sum of squares of vector fields up to higher step, to appear in Communications in Analysis and Geometry.
    14. J. Cheeger, T. H. Colding and W. P. Minicozzi, Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature, Geom. Funct. Anal. 5 (1995), no. 6, 948-954.
    15. J. Cheeger, T. H. Colding and G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal. 12(2002) 873-914.
    16. S.-C. Chang, C.-W. Chen and C.-T. Wu, On the CR analogue of Reilly formula and Yau eigenvalue conjecture, arXiv:1503.07639, to appear in Asian J. Math.
    17. S.-C Chang, Y.-W. Fan, An optimal gap theorem in a complete strictly pseudoconvex CR (2n+1)-Manifold, J. Geom. Anal. 26(2016): 2425-2449.
    18. S.-C. Chang, Y.-W. Fan, J. Tie and C.-T. Wu, Matrix Li-Yau-Hamilton Inequality for the CR Heat Equation in Pseudohermitian (2n+1)-manifolds, Math. Ann. 360 (2014), 267--306.
    19. B.-L. Chen, X.-Y. Fu, L. Yin and X.-P. Zhu, Sharp dimension estimates of holomorphic functions and rigidity, Trans. of AMS, Volume 358, Number 4(2005) 1435-1454.
    20. B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Commun. Pure and Appl. Math., XLV (1992),1003-1014.
    21. J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Annals of Math. 144(1996) 189-237.
    22. J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below I, II, III, J. Differential Geometry 46(1997) 406-480, 54(2000) 13-35, 54(2000) 37-74.
    23. S.-C. Chang, Y.-B. Han, and C. Lin, On the sharp dimension estimate of CR holomorphic functions in Sasakian manifolds, 2017, submitted.
    24. S.-C. Chang, Y.-B. Han, and C. Lin, On the three-circle theorem and its applications in Sasakian manifolds, 2018, submitted.
    25. W.-L. Chow: Uber System Von Lineaaren Partiellen Differentialgleichungen erster Orduung,. Math. Ann. 117 (1939), 98-105.
    26. S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28 (1975), 333 354.
    27. S.-C. Chang, T.-J. Kuo, and S.-H. Lai, Li-Yau Gradient Estimate and Entropy Formulae for the CR Heat Equation in a Closed Pseudohermitian 3-manifold, J. Diff. Geom. Volume 89 (2011), 185-216.
    28. S.-C. Chang, T.-J. Kuo, C. Lin and J.Z. Tie, CR sub-Laplacian comparison and Liouville theorem for positive pseudoharmonic functions in a complete Sasakian manifold, preprint.
    29. S.-C. Chang, Otto van Koert and C.-T. Wu, The torsion flow on a closed pseudohermitian 3-manifold, arXiv:1305.5391.
    30. T. H. Colding and W. P. Minicozzi, Harmonic functions on manifolds, Ann. of Math. 146 (1997), no. 3, 725-747.
    31. A. Chau and L.-F. Tam, On the complex structure of Kähler manifolds with nonnegative curvature, J. Diff. Geom, 73(2006), 491-530.
    32. S.-C. Chang, J. Tie and C.-T. Wu, Subgradient Estimate and Liouville-type Theorems for the CR Heat Equation on Heisenberg groups Hⁿ, Asian J. Math. 14, No. 1 (2010), 041--072.
    33. B.-L. Chen, S.-H. Tamg and X.-P. Zhu, A uniformization theorem for complete noncompact Kähler surfaces with positive bisectional curvature, J. Differential Geometry 67(2004) 519-570.
    34. H.-D. Cao and S.-T. Yau, Gradient Estimate, Harnack Inequalities and Estimates for Heat Kernel of the Sum of Squares of Vector Fields, Mathematische Zeitschrift 221 (1992),485-504.
    35. B.-L. Chen and X.-P. Zhu, On complete noncompact Kähler manifolds with positive bisectional curvature, Math. Ann. 327(2003) 1-23.
    36. J.P. Demailly, Complex analytic and differential geometry, Institut Fourier (2012).
    37. H. Donnelly, Uniqueness of positive solutions of the heat equation. AMS 99(2) (1987).
    38. S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR manifolds, Progress in Mathematics, Volume 246, Birkhauser, 2006.
    39. Yu-Xin Dong and Wei Zhang, Comparison theorems in pseudohermitian geometry and applications, arXiv:1611.00539.
    40. A. Futaki, H. Ono and G.-F. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Differential Geometry 83(2009) 585-635.
    41. A. Greenleaf, The First eigenvalue of a SubLaplacian on a Pseudohermitian manifold, Comm. Part. Diff. Equ. 10(2) No.3 (1985), 191-217.
    42. P.A. Griffiths and J. Harris, Principles of algebraic geometry, Wylie (1978).
    43. R.E. Green, H. Wu, Integrals of subharmonic functions on manifolds on negative curvature, Invent. Math. 27(1974) 265-298.
    44. R.E. Green, H. Wu, Gap theorems for noncompact Riemannian manifolds, Duke Math. Journal 49(3) (1982) 731-756.
    45. L. Hörmander, Hypoelliptic Second Order Differential Equations, Acta Math. 119 (1967), 147-171.
    46. R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom., 37 (1993), no. 1,225-243.
    47. R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, 7-136, International Press, Cambridge, MA, 1995.
    48. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 41 (1982), 255-306.
    49. R. S. Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom., 41 (1995), no. 1, 215-226.
    50. J. Hadamard, Sur les fonctions entières, Bull. Soc. Math. France 24 (1896), 186-187.
    51. N. Hitchin, "On the curvature of rational surfaces" in Differential Geometry (Stanford, Calif., 1973), Proc. Sympos. Pure Math. 27, Part 2, Amer. Math. Soc., Providence (1975), 65-80
    52. D. Jerison and A. Sánchez-Calle, Estimates for the Heat Kernel for the Sum of Squares of Vector Fields, Indiana J. Math. 35 (1986), 835-854.
    53. A. Kasue, Harmonic functions with growth conditions on a manifold of asymptotically non- negative curvature II, Recent Topics in Differential and Analytic Geometry, Adv. Stud. Pure Math., vol. 18, North-Holland, 1989.
    54. A. Koranyi and N. Stanton, Liouville Type Theorems for Some Complex Hypoelliptic Operators, J. of Funct. Anal. 60 (1985), 370-377.
    55. S. Kusuoka and D. Stroock, Application of Malliavin Calculus (Part lII), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 391-442.
    56. S. Kusuoka and D. Stroock, Long time estimates for the heat kernel associated with a uniformly sbellitic symmetric second order operator. Ann. Math. 127 (1988), 165-189.
    57. J.M. Lee, The Fefferman Metric and Pseudohermitian Invariants, Transaction A.M.S. Volume 296, Number 1 (1986), 411-429.
    58. J. M. Lee, Pseudo-Einstein Structure on CR Manifolds, Amer. J. Math. 110 (1988), 157-178.
    59. P. Li, "Geometric Analysis ", Cambridge Studies in Advanced Mathematics, 134, Cambridge University Press, 2012.
    60. P. Li, Linear growth harmonic functions on Kähler manifolds with nonnegative Ricci curva- ture, Math. Res. Lett. 2 (1995), 79-94.
    61. P. Li, Harmonic sections of polynomial growth, Math. Res. Lett. 4 (1997), 35-44.
    62. Gang Liu, Three circles theorem on Kähler manifolds and applications, Duke Math J.
    63. Gang Liu, Gromov-Hausdorff limits of Kähler manifolds and the finite generation conjecture, Annals of Math. 184(2016) 775-815
    64. Gang Liu, On Yau's Uniformization Conjecture, arXiv: 1606.08958v2.
    65. P. Li and L.-F. Tam, Complete surfaces with finite total curvature, J. Differential Geom. 33 (1991), 139-168.
    66. P. Li and L.-F. Tam, Linear growth harmonic functions on a complete manifold, J. Differential Geom. 29 (1989), 421-425.
    67. P. Li and S. -T. Yau, Estimates of Eigenvalues of a Compact Riemannian Manifold, AMS Proc. Symp. in Pure Math. 36 (1980), 205-239.
    68. P. Li and S. -T. Yau, On the Parabolic Kernel of the Schrödinger Operator, Acta Math. 156 (1985), 153-201.
    69. R. Melrose, Propagation for the wave group of a positive subelliptic second-order differential operator. In: Mizohata, S. (ed.) Hyperbolic equations and related topics, pp. 181-192. Boston, MA: Academic Press 1986.
    70. N. Mok, An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties, Bull. Soc. Math. France 112(1984) 197-250.
    71. N. Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geometry 27(1988) 179-214.
    72. N. Mok, Y.-T. Siu and S.-T. Yau, The Poincaré-Lelong equation on complete Kähler manifolds Compos. Math. 44(1981) 183-218.
    73. Lei Ni, A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature, J. of AMS, Volume17, Number 4(2004) 909-946.
    74. Lei Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Differential Geometry 50(1998) 89-122.
    75. L. Ni, Y. Shi and L.-F. Tam, Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds, J. Differential Geometry 57(2001) 339-388.
    76. L. Ni, L.-F. Tam, Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Differential Geometry 64(2003) 457-524.
    77. L. Ni, L.-F. Tam, Kähler-Ricci flow and the Poincaré-Lelong equation, Comm. Anal. Geom. Math. 12(2004) 111-141.
    78. L. Ni, L.-F. Tam, Plurisubharmonic functions and the Kähler-Ricci flow, Amer. Jour. of Math. 125(2003) 623-645.
    79. L. Ni, L.-F. Tam, Poincaré-Lelong equation via the Hodge-Laplace heat equation, Compos. Math. 149 1856-1870.
    80. G. Perelman, The Entropy Formula for the Ricci Flow and its Geometric Applications. ArXiv: Math. DG/0211159.
    81. G. Perelman, The Ricci Flow with Surgery on Three-manifolds, ArXiv:Math.DG/0303109.
    82. G. Perelman, Finite Extinction Time for the Solutions to the Ricci Flow on Certain Three-manifolds, ArXiv: Math.DG/0307245.
    83. L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992), no. 2, 417-450.
    84. L. Saloff-Coste,"Aspect of Sobolev-type inequalities", London Math. Soc. Lecture Notes Series 289. Cambridge University Press, 2002.
    85. Richard Schoen and S.-T. Yau, Lectures on differential geometry, International Press(1994).
    86. Y.-T. Siu and S.-T. Yau, Complete Kähler manifolds with non-positive curvature of faster than quadratic decay, Ann. Math. 105 (1977), 225-264.
    87. N. Tanaka, A Differential Geometric Study on Strongly Pseudoconvex manifolds, Kinokuniya Book Store Co. Ltd., Kyoto, 1975.
    88. S. Tanno, Sasakian manifolds with constant φ-holomorphic sectional curvature, Tôhoko Math. Journ. 21 (1969), 501-507.
    89. S. M. Webster, Pseudo-Hermitian Structures on a Real Hypersurface, J. Diff. Geom. Volume 13 (1978), 25-41.
    90. S. -T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
    91. S. -T. Yau (ed.), "Seminar on Differential Geometry ", Annals of Math. Studies 102, Princeton, New Jersey, 1982.
    92. S. -T. Yau, Open problems in geometry, Lectures on Differential Geometry, by Schoen and Yau, International Press (1994), 365-404.

    QR CODE