研究生: |
黃亭穎 Huang, Ting-Ying |
---|---|
論文名稱: |
基於良率指標發展製程良率評估程序之研究 Procedures of Process Yield Assessment Based on Yield Index |
指導教授: |
吳建瑋
Wu, Chien-Wei |
口試委員: |
蘇明鴻
張英仲 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 貝氏方法 、馬可夫鏈蒙地卡羅 、Box-Cox轉換 、涵蓋率 、相對偏誤 |
外文關鍵詞: | Bayesian approach, Markov Chain Monte Carlo, Box-Cox transformation, Coverage rate, Relative bias |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
製程良率為普遍用於製造業以評估製程產出品質的標準,而製程能力指標(process capability indices, PCIs)為目前業界用來衡量製程產出績效的重要統計工具之一,其中Spk指標能對具雙邊規格之常態分配製程提供精確的良率衡量,其指標值與良率存在一對一的對應關係。然而,Spk指標估計式之求算及抽樣分配相當複雜,以致其精確的信賴區間亦難以求得。此外,在實務上有許多品質特性並非符合常態分配,使得Spk指標在實務應用上受到侷限。
為克服上述問題,本研究基於製程良率指標Spk提出一套通用的製程良率評估流程,探討內容主要分成兩部份,第一部分針對常態製程,以貝氏方法結合馬可夫鏈蒙地卡羅(Markov Chain Monte Carlo, MCMC)建構Spk可信區間,並以涵蓋率及區間寬度評估MCMC所得可信區間之表現,模擬結果證實了MCMC能精確地估計製程良率,為良率估計提供另一種精確又可靠的選擇。而第二部份則針對非常態製程,將非常態資料透過Box-Cox轉換後估計Spk,並進一步分析各種非常態分配下指標估計值的相對偏誤(relative bias),將此相對偏誤彙整成修正表,供使用者進行後續修正以獲得更準確之估計。最後,本研究建構製程良率評估程序之圖形化使用者介面,針對常態與非常態製程之情境,各應用一個真實案例闡述製程良率分析流程,讓使用者能簡易地進行良率估計與製程能力評估。
Process yield is a standard numerical measure of process performance in manufacturing industry. Process capability indices, closely related to yield, are effective statistical tools for quality assurance. In particular, the yield index Spk can provide an exact measure on the process yield of normal process with two-sided specifications. However, the calculation and sampling distribution of the estimated Spk is mathematically intractable, making the exact confidence interval of Spk difficult to establish. Moreover, in practice, quality characteristic with non-normal distribution are also common, this will restrict the application of Spk.
To overcome the above problem, this paper provide procedures for assessing the process yield based on yield index Spk. For normal processes, we integrate the Markov Chain Monte Carlo (MCMC) technique into Bayesian approach for constructing the credible interval for Spk. The results show that MCMC can provide an accurate and reliable information on assessing the yield. For non-normal processes, we consider the Box-Cox transformation to estimate the yield index, and examine the performance of transformation by relative bias. We also tabulate the relative bias for further adjustment of yield. In addition, we develop a graphical user interface for assessing process yield easily based on Spk and also present two examples for normal and non-normal process to illustrate the applicability of the proposed procedure.
1. Bernardo, J. M., & Smith, A. F. (1993). Bayesian theory: IOP Publishing.
2. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 211-252.
3. Box, G. E., & Tiao, G. C. (2011). Bayesian Inference in Statistical Analysis (Vol. 40): John Wiley & Sons.
4. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
5. Boyles, R. A. (1994). Process capability with asymmetric tolerances. Communications in Statistics - Simulation and Computation, 23(3), 615-635. doi: 10.1080/03610919408813190
6. Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434-455.
7. Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174.
8. Chan, L., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175.
9. Chen, J. P. (2005). Comparing four lower confidence limits for process yield index Spk. The International Journal of Advanced Manufacturing Technology, 26(5), 609-614. doi: 10.1007/s00170-004-2351-9
10. Cheng, S. W., & Spiring, F. A. (1989). Assessing process capability: a Bayesian approach. IIE Transactions, 21(1), 97-98.
11. Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434), 883-904.
12. Efron, B. (1993). Bootstrap methods: another look at the jackknife. Breakthroughs in Statistics (pp. 569-593): Springer.
13. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75.
14. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409.
15. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 457-472.
16. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence(6), 721-741.
17. Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995a). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 455-472.
18. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995b). Markov Chain Monte Carlo in Practice: CRC press.
19. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 337-348.
20. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.
21. Hsu, Y. C., Pearn, W., & Wu, P.-C. (2008). Capability adjustment for gamma processes with mean shift consideration in implementing six sigma program. European Journal of Operational Research, 191(2), 517-529.
22. Jeffreys, H. (1998). The Theory of Probability: OUP Oxford.
23. Juran, J. M. (1974). Basic concepts. Quality Control Handbook, 2.
24. Juran, J. M., & Gryna, F. M. (1993). Quality Planning and Analysis; from product development through use.
25. Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo Methods: John Wiley & Sons (New York).
26. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
27. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370.
28. Lee, J. C., Hung, H. N., Pearn, W. L., & Kueng, T. L. (2002). On the distribution of the estimated process yield index Spk. Quality and Reliability Engineering International, 18(2), 111-116. doi: 10.1002/qre.450
29. Liao, M. Y. (2017). Efficient Technique for Assessing Actual Non‐normal Quality Loss: Markov Chain Monte Carlo. Quality and Reliability Engineering International, 33(5), 945-957.
30. Müller, P. (1991). A Generic Approach to Posterior Integration and Gibbs Sampling: Purdue University, Department of Statistics.
31. Mathew, T., Sebastian, G., & Kurian, K. (2007). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(4), 471-481.
32. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092.
33. Montgomery, D. C. (1985). Introduction to Statistical Quality Control: John Wiley & Sons (New York).
34. Pearn, W. L., & Chuang, C. C. (2004). Accuracy analysis of the estimated process yield based on Spk. Quality and Reliability Engineering International, 20(4), 305-316.
35. Pearn, W. L., Lin, G., & Wang, K. (2004). Normal approximation to the distribution of the estimated yield index S pk. Quality & Quantity, 38(1), 95-111.
36. Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics-Theory and Methods, 27(4), 985-1000.
37. Pearn, W. L., & Wu, C. W. (2005). Process capability assessment for index Cpk based on bayesian approach. Metrika, 61(2), 221-234.
38. Roberts, G. O., & Smith, A. F. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications, 49(2), 207-216.
39. Shiau, J. J. H., Chiang, C. T., & Hung, H. N. (1999). A Bayesian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 369-378.
40. Somerville, S. E., & Montgomery, D. C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 9(2), 305-316.
41. Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of Statistics, 1701-1728.
42. Tsui, K. W., & Weerahandi, S. (1989). Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters. Journal of the American Statistical Association, 84(406), 602-607.
43. Weerahandi, S. (1995). Generalized confidence intervals. Exact Statistical Methods for Data Analysis (pp. 143-168): Springer.
44. Wu, C. W. (2008). Assessing process capability based on Bayesian approach with subsamples. European Journal of Operational Research, 184(1), 207-228.
45. Wu, C. W., Pearn, W. L., Chang, C., & Chen, H. (2007). Accuracy analysis of the percentile method for estimating non normal manufacturing quality. Communications in Statistics—Simulation and Computation®, 36(3), 657-697.
46. Wu, C. W., Liao, M. Y., & Chen, J. C. (2012). An improved approach for constructing lower confidence bound on process yield. European Journal of Industrial Engineering, 6(3), 369-390.
47. Yang, R., & Berger, J. O. (1996). A Catalog of Noninformative Priors: Institute of Statistics and Decision Sciences, Duke University.
48. Zellner, A., & Min, C. K. (1995). Gibbs sampler convergence criteria. Journal of the American Statistical Association, 90(431), 921-927.