研究生: |
邱勁硯 Chiou, Jin-Yan |
---|---|
論文名稱: |
利用快速退火製程製備具(001)織構之L10鐵鉑薄膜對其顯微結構及磁性質的影響 The effect of rapid thermal annealing process on microstructure and magnetic properties of L10 FePt films with (001) texture |
指導教授: |
歐陽淳厚(浩)
Ouyang, Chuenhou(Hao) |
口試委員: |
張晃暐
Chang, Huang Wei 羅聖全 Lo, Shen Chuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 202 |
中文關鍵詞: | 鐵鉑合金 、快速熱退火 、磁域壁栓固 、垂直異向性 |
外文關鍵詞: | FePt, rapid thermal annealing, domain wall pinning, perpendicular anisotropy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉由雙離子束濺鍍系統(dual ion beam deposition system, DIBD) 於室溫下鍍製[Fe/Pt]8多層膜Si(100)//SiO2(90nm)基板上,接著利用快速退火爐(Rapid thermal annealing, RTA)於550℃下進行後退火處理,後退火製程皆於真空(P<1×10-5Torr)中進行,退火完成後即以無控制其降溫速率的方式自然冷卻至室溫。首先,為了得到完美(001)織構(texture)的FePt薄膜,我們藉由降低直流濺鍍源功率及增加鍍膜時的工作壓力來降低濺鍍原子的動能,使FePt薄膜中的原子堆疊較為鬆散,因而使FePt薄膜傾向於殘留張應力來幫助FePt序化。另外,FePt的化學劑量比也直接影響FePt的性質,僅有當Fe原子百分比為54%時,FePt才呈現完美的FePt(001)織構。
藉由改變退火持溫時間來探討其對FePt性質的影響。固定升溫速率為40℃/s,改變不同的持溫時間(5秒、90秒、150秒、240秒、300秒),我們發現增加持溫時間可以使薄膜中的A1 FePt序化為L10 FePt而使垂直方向矯頑場增加,然而過長的持溫時間(300秒)會使FePt薄膜傾向於形成表面能較低的(111)織構。
接著,我們藉由改變不同的升溫速率來探討其對FePt性質的影響,固定持溫時間為240秒,改變不同的升溫速率(20℃/s、40℃/s、60℃/s、75℃/s)。由X光繞射可得知當升溫速率為20℃/s,FePt薄膜內存在少部分的(111)織構。而隨著升溫速率的增加(40℃/s、60℃/s、75℃/s),FePt薄膜皆呈現完美的(001)織構。接著我們藉由X光繞射來進行均勻應力及非均勻應力的分析。當升溫速率越快,其殘留的水平張應力會越大,此水平張應力會幫助FePt序化並得到好的(001)織構。然而,當水平張應力越大,FePt薄膜會傾向於產生更多的缺陷以釋放薄膜應力,所以薄膜內部缺陷所造成的不均勻應力也會變大。而由超導量子干涉儀分析磁性質得知,升溫速率越快垂直方向矯頑場大小隨之增加,40℃/s、60℃/s、75℃/s其垂直方向矯頑場分別為9.3kOe、10.2kOe、10.9 kOe,此是由於隨著升溫速率的上升,FePt薄膜之差排密度隨之增加,差排於FePt薄膜中扮演磁域壁栓固點來阻止磁域壁移動,因而使矯頑場上升。此結果與薄膜殘留應力分析相符,當升溫速率越快,會產生越大的水平張應力來幫助FePt序化,然而在越大的水平張應力作用下薄膜會傾向於產生越多的差排來釋放薄膜應力,所以由X光繞射分析求得的非均勻應力大小(由差排造成)也隨之增加。
缺陷栓固磁域壁移動之強度與以下參數有關,一為磁域壁寬度,而磁域壁寬度與磁晶異向性常數成反比,FePt具高磁晶異向性常數(7×107 erg/cm3),其於居禮溫度下磁域壁寬度僅數個奈米,因此磁域壁寬度與缺陷大小相近而有較強之栓固作用。二為磁彈作用,缺陷因其應力場作用而產生磁彈作用來栓固磁域壁移動。而為了更深入的了解缺陷所造成的應力影響與磁域壁栓固之關係,我們藉由幾何相位分析以得到HRTEM之應變作圖,經由量測得知FePt薄膜中差排單位面積下於晶格中之應變量較疊差大,此結果與差排理論相符。綜合磁域壁寬度與磁彈作用的影響,我們可知在FePt薄膜中差排的栓固磁域壁作用較疊差強。
In this study, multilayers [Fe/Pt]8 were alternately deposited on Si(100)//SiO2(90nm) substrates at room temperature and subsequently annealed in vacuum(<1×10-5 Torr) at 550℃ by rapid thermal annealing(RTA) system, and the cooling of samples was natural cooling. In order to get the L10 FePt films with perfect (001) texture, we reduced the kinetic energy of sputtering atom to obtain loose atomic stack of FePt films by reducing power of dc ion source and increasing working pressure, which FePt films tend to remain tensile stress. Furthermore, stoichiometry of FePt directly affected the properties of FePt films. The FePt film with perfect (001) texture was obtained when the atomic percent of Fe is 54%.
In order to know that how the annealing time affect the properties of FePt films, samples were annealed for different periods (5, 90, 150, 240, 300 second) by using an RTA system, and all samples were with the same heating rate of 40℃/s. The out of plane coercivity became larger as the annealing time increased. These features indicate that the A1-phase FePt could be converted to the L10-phase upon further annealing. However, the FePt film tends to minimize its surface energy by forming (111) texture with longer annealing time (300 second).
To discuss how the heating rate of RTA system affect the properties of FePt film, samples were annealed with different heating rate (20, 40, 60, 75℃/s) for the same annealing time of 240 second. From the X-ray diffraction (XRD), the FePt film existed (111) texture with the heating rate of 20℃/s. However, there were perfect (001) texture of FePt films with increase of the heating rate (40, 60, 75℃/s). Furthermore, we analyzed uniform and non-uniform stress from XRD peak. The larger in plane tensile stress which induced by increase the heating rate of RTA system enhanced the ordering of FePt films with (001) texture. However, the larger in plane residual stress was released by forming more strain relaxation defect and the non-uniform stress induced by strain relaxation defect also increased. From Superconducting Quantum Interference Device (SQUID), the out of plane coercivities increased with increase of the heating rate. The out of plane coercivities of 40℃/s, 60℃/s and 75℃/s were 9.3kOe, 10.2kOe and 10.9kOe respectively. The increase of out of plane coercivity is because of the more dislocation induced by the strain relaxation with higher heating rate, which act as strong domain wall pinning site to obstruct domain wall motion. This conclusion was confirmed with the analysis of residual stress by XRD. The larger in plane tensile stress is induced by higher heating rate to enhance the ordering of (001) texture FePt. However, the larger in plane tensile stress apply to FePt thin film would induce more dislocation to release the stress. So we could observe the non-uniform stress which induced by dislocation also increased with the increase of heating rate.
The strength of domain wall pinning is associated with domain wall width and
magnetoelastic coupling. Domain wall width is inversely proportional to magnetocrystalline anisotropy (Ku). Because of the high Ku of FePt (7×107 erg/cm3), the width of FePt domain wall only several nanometer below the Curie temperature. Therefore, the pinning site with a size close to domain wall width may result in the stronger pinning effect. Furthermore, defects generate a stress field which, via magnetoelastic coupling, interact with the domain wall to obstruct domain wall motion. In order to know that what is the relationship between stress field and domain wall pinning. We got the strain mapping of HRTEM by geometrical phase analysis. By measuring the strain field of dislocation and stacking fault in the strain mapping, the strain field of dislocation was larger than that of stacking fault in FePt films. This result is confirmed with the theory of dislocation. Summarized with the effect of domain wall width and magnetoelastic coupling on pinning domain wall, the pinning strength of dislocation is stronger than stacking fault in FePt films.
第一章參考文獻:
1. http://www.tweaktown.com/news/41411/atsc-lays-out-path-to-100-tb-hdds-by-2025/index.html.
2. Atherton, D.L., and J. R. Beattie, A mean field Stoner-Wohlfarth hysteresis model. Magnetics, IEEE Transactions, 1990. 26.6: p. 3059-3063.
3. Charap, S.H., Pu-Ling Lu, and Yanjun He, Thermal stability of recorded information at high densities. Magnetics, IEEE Transactions, 1997. 33.1: p. 978-983.
4. 楊志信, Principles of Perpendicular Magnetic Recording. 台灣資訊儲存技術協會會刊, 2005.
5. http://www.tomshardware.com/reviews/small-beautiful,1249-2.html.
6. Chen, J., Sun, C., & Chow, G. M. , A review of L10 FePt films for high-density magnetic recording. International Journal of Product Development, 2008. 5.3-4: p. 238-258.
7. Weller, D., et al., High Ku materials approach to 100 Gbits/in 2. IEEE Transactions on Magnetics, 2000. 36(1): p. 10-15.
8. Perumal, A., Yukiko K. Takahashi, and Kazuhiro Hono., L10 FePt–C nanogranular perpendicular anisotropy films with narrow size distribution. Applied physics express, 2008. 1.10: p. 101301.
9. Luo, C.P., & Sellmyer, D. J. , Structural and magnetic properties of FePt: SiO2 granular thin films. 1999.
10. Endo, Y., Kikuchi, N., Kitakami, O., & Shimada, Y., Lowering of ordering temperature for fct Fe-Pt in Fe/Pt multilayers. Journal of Applied Physics, 2001. 89.11: p. 7065-7067.
11. Shima, T., Moriguchi, T., Mitani, S., & Takanashi, K. , Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition. Applied Physics Letters, 2002. 80.2: p. 288-290.
12. Wang, S.-W., et al., Formation of ordered FePt (001) texture with reduced diffusion length. IEEE Transactions on Magnetics, 2009. 45(10): p. 3580-3583.
13. Ravelosona, D., et al., Chemical order induced by ion irradiation in FePt (001) films. Applied Physics Letters, 2000. 76: p. 236.
14. Lai, C.-H., Cheng-Han Yang, and C. C. Chiang., Ion-irradiation-induced direct ordering of L10 FePt phase. Applied physics letters, 2003. 83: p. 4550.
15. Shima, T., Takanashi, K., Takahashi, Y. K., & Hono, K., Preparation and magnetic properties of highly coercive FePt films. Applied Physics Letters, 2002. 81.6: p. 1050-1052.
16. Peng, Y., Zhu, J. G., & Laughlin, D. E., L10 FePt-MgO perpendicular thin film deposited by alternating sputtering at elevated temperature. Journal of applied physics, 2006. 99.8: p. 8F907.
17. Ding, Y.F., J. S. Chen, and E. Liu. , Epitaxial L10 FePt films on SrTiO3 (100) by sputtering. Journal of crystal growth, 2005. 276.1: p. 111-115.
18. Kim, J.S., Koo, Y. M., Lee, B. J., & Lee, S. R., The origin of (001) texture evolution in FePt thin films on amorphous substrates. Journal of applied physics, 2006. 99.5: p. 053906.
19. Zhang, L., Takahashi, Y. K., Perumal, A., & Hono, K., L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording. Journal of Magnetism and Magnetic Materials, 2010. 322.18: p. 2658-2664.
20. Chen, J.S., Lim, B. C., & Wang, J. P., Controlling the crystallographic orientation and the axis of magnetic anisotropy in L10 FePt films. Applied physics letters, 2002. 81.10: p. 1848-1850.
21. Xu, Y., Chen, J. S., Dai, D., & Wang, J. P., FePt fct-[001] texture prepared at lower temperature for high areal density perpendicular recording. Magnetics. IEEE Transactions on, 2002. 38.5: p. 2042-2044.
22. Feng, Y.C., Laughlin, D. E., & Lambeth, D. N. , Formation of crystallographic texture in rf sputter‐deposited Cr thin films. Journal of applied physics, 1994. 76.11: p. 7311-7316.
23. Ding, Y.F., Chen, J. S., Liu, E., Sun, C. J., & Chow, G. M., Effect of lattice mismatch on chemical ordering of epitaxial L10 FePt films. Journal of applied physics, 2005. 97.10: p. 10H303.
24. Yang, E., Ratanaphan, S., Zhu, J. G., & Laughlin, D. E., Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers. . Journal of Applied Physics, 2011. 109.7: p. 07B770.
25. Tsuji, Y., Noda, S., & Nakamura, S., Nanostructure and magnetic properties of c-axis oriented L10-FePt nanoparticles and nanocrystalline films on polycrystalline TiN underlayers. . Journal of Vacuum Science & Technology B, 2011. 29.3: p. 031801.
26. Wang, L.W., Shih, W. C., Wu, Y. C., & Lai, C. H. , Promotion of [001]-oriented L10-FePt by rapid thermal annealing with light absorption layer. Applied Physics Letters, 2012. 101.25: p. 252403.
27. Hsiao, S.N., Liu, S. H., Chen, S. K., Chin, T. S., & Lee, H. Y., Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films. Applied Physics Letters, 2012. 100.26: p. 261909.
28. Mizuguchi, M., Sakurada, T., Tashiro, T. Y., Sato, K., Konno, T. J., & Takanashi, K., Fabrication of highly L10-ordered FePt thin films by low-temperature rapid thermal annealing. APL Materials, 2013. 1.3: p. 032117.
第二章參考文獻:
1. 李翊豪, Mn-Sn-M系合金薄帶磁卡效應之研究 (M=B, Al, Ga, C, Si, Fe, Co, Ni). 國立中正大學物理研究所碩士論文, 2011: p. 24.
2. William D. Callister, J., Materials Science & Engineering An introduction 8th.
3. B.D.Cullity, Introduction to magnetic materials second edition. 2009.
4. Raymond A. Serway, J.W.J., Physics for scientists and engineers 2th. 2004.
5. Spaldin, N.A., Magnetic Materials: Fundamentals and Applications. 2003: p. 83.
6. Ashby, M.F., et al., Engineering Materials and Processes e-Mega Reference. 2009: Butterworth-Heinemann.
7. Bowles, J., et al., Interpretation of Low-Temperature Data Part 1: Superparamagnetism and Paramagnetism. The IRM Quarterly, 2009. 19.
8. Atherton, D.L., and J. R. Beattie, A mean field Stoner-Wohlfarth hysteresis model. Magnetics, IEEE Transactions, 1990. 26.6: p. 3059-3063.
9. Charap, S.H., Pu-Ling Lu, and Yanjun He, Thermal stability of recorded information at high densities. Magnetics, IEEE Transactions, 1997. 33.1: p. 978-983.
10. Wood, R., Detection and capacity limits in magnetic media noise. Magnetics, IEEE Transactions, 1998. 34.4: p. 1848-1850.
11. Weller, D., High Ku materials approach to 100 Gbits/in 2. Magnetics, IEEE Transactions 2000. 36.1: p. 10-15.
12. Takahashi, Y.K., T. Ohkubo, and K. Hono, Microstructure and magnetic properties of SmCo5 thin films deposited on Cu and Pt underlayers. Journal of applied physics, 2006. 100.5: p. 053913.
13. Richter, H. and A.Y. Dobin, Angle effects at high-density magnetic recording. Journal of magnetism and magnetic materials, 2005. 287: p. 41-50.
14. Albrecht, T.R., et al., Bit-patterned magnetic recording: Theory, media fabrication, and recording performance. IEEE Transactions on Magnetics, 2015. 51(5): p. 1-42.
15. Kryder, M.H., et al., Heat assisted magnetic recording. Proceedings of the IEEE, 2008. 96(11): p. 1810-1835.
16. Tagawa, I., et al., Advantage of MAMR Read-Write Performance.
17. Wood, R., Shingled Magnetic Recording and Two-Dimensional Magnetic Recording. IEEE Magnetics Society Santa Clara Valley Chapter, 2010.
18. Gutfleisch, O., FePt hard magnets. Advanced Engineering Materials, 2005. 7.4: p. 209.
19. JCPDS card, Card No. 65-1051.
20. Tadaki, T., and Ken'ichi Shimizu, High tetragonality of the thermoelastic Fe3Pt martensite and small volume change during the transformation. Scripta Metallurgica, 1975. 9.7(771-776).
21. Maat, S., Antiferromagnetic structure of FePt3 films studied by neutron scattering. Physical review B, 2001. 63.13: p. 134426.
22. 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯, 磁性基本特性及磁性材料應用. 國立台灣大學化學系.
23. Shima, T., Takanashi, K., Takahashi, Y. K., & Hono, K., Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films. Applied Physics Letters, 2004. 85.13(2571-2573).
24. Y. K. Takahashi, T.O., M. Ohnuma, and K. Hono, Size effect on the ordering of FePt granular films. Journal of applied physics, 2003. 93.10: p. 7166.
25. Chen, J., Sun, C., & Chow, G. M. , A review of L10 FePt films for high-density magnetic recording. International Journal of Product Development, 2008. 5.3-4: p. 238-258.
26. Ristau, R., et al., On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films. Journal of applied physics, 1999. 86(8): p. 4527-4533.
27. Sablik, M.J., Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels. Journal of Applied Physics, 2001. 89.10: p. 5610-5613.
28. Kalita, M., A. Perumal, and A. Srinivasan, Microstructure and magnetic properties of nanocrystalline Fe75Si20M5 (M= Al, B, Cr) powders. Journal of Physics D: Applied Physics, 2008. 41(16): p. 165002.
29. Menendez, E., et al., Improving the Magnetic Properties of Co–CoO Systems by Designed Oxygen Implantation Profiles. ACS applied materials & interfaces, 2013. 5.10: p. 4320-4327.
30. Hsiao, C., et al., Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films. Applied Physics Letters, 2015. 107(14): p. 142407.
31. Hong, M., K. Hono, and M. Watanabe, Microstructure of FePt/Pt magneticthin films with high perpendicular coercivity. Journal of Applied Physics, 1998. 84(8): p. 4403-4409.
32. Attané, J., et al., Domain wall pinning on strain relaxation defects in FePt (001)/Pt thin films. Applied Physics Letters, 2001. 79(6): p. 794-796.
33. Shima, T., Takanashi, K., Takahashi, Y. K., & Hono, K., Preparation and magnetic properties of highly coercive FePt films. Applied Physics Letters, 2002. 81.6: p. 1050-1052.
34. Takahashi, Y., et al., Microstructure and magnetic properties of FePt and Fe/FePt polycrystalline films with high coercivity. Journal of applied physics, 2004. 96(1): p. 475-481.
35. Medwal, R., N. Sehdev, and S. Annapoorni, Order–disorder investigation of hard magnetic nanostructured FePt alloy. Journal of Physics D: Applied Physics, 2012. 45(5): p. 055001.
36. Hsu, C.W., Chen, S. K., Liao, W. M., Yuan, F. T., Chang, W. C., & Tsai, J. L. , Effect of Pt underlayer on the coercivity of FePt sputtered film. Journal of Alloys and Compounds, 2008. 449.1: p. 52-55.
37. Wang, H.Y., et al., Improvement in hard magnetic properties of FePt films by N addition. Journal of applied physics, 2004. 95.5: p. 2564-2568.
38. Perumal, A., Yukiko K. Takahashi, and Kazuhiro Hono., L10 FePt–C nanogranular perpendicular anisotropy films with narrow size distribution. Applied physics express, 2008. 1.10: p. 101301.
39. Luo, C.P., & Sellmyer, D. J. , Structural and magnetic properties of FePt: SiO2 granular thin films. 1999.
40. Ding, Y.F., Chen, J. S., Lim, B. C., Hu, J. F., Liu, B., & Ju, G., Granular L10 FePt: TiO2 (001) nanocomposite thin films with 5nm grains for high density magnetic recording. Applied Physics Letters, 2008. 93.3: p. 32506-32900.
41. Dong, K.F., Li, H. H., Peng, Y. G., Ju, G., Chow, G. M., & Chen, J. S., L10 FePt-ZrO2 (001) nanostructured films with high aspect ratio columnar grains. Applied Physics Letters, 2014. 104.19: p. 192404.
42. Shiroyama, T., Varaprasad, B. S., Takahashi, Y. K., & Hono, K., Microstructure and Magnetic Properties of FePt-Cr 2O3 Films. Magnetics, IEEE Transactions, 2014. 80.11: p. 1-4.
43. Okanoto, H., Binary Alloy Phase Diagram, second edition. 1992. 2.
44. Wang, L.W., Shih, W. C., Wu, Y. C., & Lai, C. H. , Promotion of [001]-oriented L10-FePt by rapid thermal annealing with light absorption layer. Applied Physics Letters, 2012. 101.25: p. 252403.
45. Hsiao, S.N., Liu, S. H., Chen, S. K., Chin, T. S., & Lee, H. Y. , Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films. Applied Physics Letters, 2012. 100.26: p. 261909.
46. Kim, J.S., Koo, Y. M., Lee, B. J., & Lee, S. R., The origin of (001) texture evolution in FePt thin films on amorphous substrates. Journal of applied physics, 2006. 99.5: p. 053906.
47. Kim, J.S., Koo, Y. M., & Shin, N., The effect of residual strain on (001) texture evolution in FePt thin film during postannealing. Journal of applied physics, 2006. 100.9: p. 093909.
48. Mizuguchi, M., Sakurada, T., Tashiro, T. Y., Sato, K., Konno, T. J., & Takanashi, K., Fabrication of highly L10-ordered FePt thin films by low-temperature rapid thermal annealing. APL Materials, 2013. 1.3: p. 032117.
49. Chiou, J. and C. Ouyang, Oriented Nonexpitaxial L10 FePt by Rapid Thermal Annealing. Madridge J Nano Tec. Sci, 2016. 1(1): p. 4-6.
50. Endo, Y., Kikuchi, N., Kitakami, O., & Shimada, Y., Lowering of ordering temperature for fct Fe-Pt in Fe/Pt multilayers. Journal of Applied Physics, 2001. 89.11: p. 7065-7067.
51. Shima, T., Moriguchi, T., Mitani, S., & Takanashi, K. , Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition. Applied Physics Letters, 2002. 80.2: p. 288-290.
52. Wang, S.-W., et al., Formation of ordered FePt (001) texture with reduced diffusion length. IEEE Transactions on Magnetics, 2009. 45(10): p. 3580-3583.
53. Peng, Y., Zhu, J. G., & Laughlin, D. E., L10 FePt-MgO perpendicular thin film deposited by alternating sputtering at elevated temperature. Journal of applied physics, 2006. 99.8: p. 8F907.
54. Ding, Y.F., J. S. Chen, and E. Liu. , Epitaxial L10 FePt films on SrTiO3 (100) by sputtering. Journal of crystal growth, 2005. 276.1: p. 111-115.
55. Kim, J.S., Koo, Y. M., Lee, B. J., & Lee, S. R., The origin of (001) texture evolution in FePt thin films on amorphous substrates. Journal of applied physics, 2006. 99.5: p. 053906.
56. Zhang, L., Takahashi, Y. K., Perumal, A., & Hono, K., L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording. Journal of Magnetism and Magnetic Materials, 2010. 322.18: p. 2658-2664.
57. Chen, J.S., Lim, B. C., & Wang, J. P., Controlling the crystallographic orientation and the axis of magnetic anisotropy in L10 FePt films. Applied physics letters, 2002. 81.10: p. 1848-1850.
58. Xu, Y., Chen, J. S., Dai, D., & Wang, J. P., FePt fct-[001] texture prepared at lower temperature for high areal density perpendicular recording. Magnetics. IEEE Transactions on, 2002. 38.5: p. 2042-2044.
59. Feng, Y.C., Laughlin, D. E., & Lambeth, D. N. , Formation of crystallographic texture in rf sputter‐deposited Cr thin films. Journal of applied physics, 1994. 76.11: p. 7311-7316.
60. Ding, Y.F., Chen, J. S., Liu, E., Sun, C. J., & Chow, G. M., Effect of lattice mismatch on chemical ordering of epitaxial L10 FePt films. Journal of applied physics, 2005. 97.10: p. 10H303.
61. Yang, E., Ratanaphan, S., Zhu, J. G., & Laughlin, D. E., Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers. Journal of Applied Physics, 2011. 109.7: p. 07B770.
62. Tsuji, Y., Noda, S., & Nakamura, S., Nanostructure and magnetic properties of c-axis oriented L10-FePt nanoparticles and nanocrystalline films on polycrystalline TiN underlayers. . Journal of Vacuum Science & Technology B, 2011. 29.3: p. 031801.
63. T. Kai, T.M., A Kikitsu, J. Akiyama, T. Nagase, T. Kishi, Magnetic and electronic structures of FePtCu ternary ordered alloy. Journal of applied physics 2004. 95: p. 609.
64. T. Maeda, T.K., A. Kikitsu, T. Nagase, J. I. Akiyama, Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu. Applied Physics Letters, 2002. 80: p. 2147.
65. Varaprasad, B.C.S., Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media. Applied Physics Letters, 2014. 104.22: p. 222403.
66. Ichitsubo, T., Mechanism of c-axis orientation of L10 FePt in nanostructured Fe Pt/B2O3 thin films. Physical Review B, 2008. 77.9: p. 094114.
67. Zeng, H., Orientation-controlled nonepitaxial L10 CoPt and FePt films. Applied physics letters 2002. 80.13: p. 2350-2352.
68. Wu, Y.-C., Liang-Wei Wang, Chih-Huang Lai., Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers. Applied Physics Letters, 2007. 91.7: p. 2502.
69. Wu, Y.-C., Control of microstructure in (001)-orientated FePt-SiO2 granular films. Journal of Applied Physics 2008. 103.7: p. 7E140.
70. Platt, C.L., L–10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. Journal of Applied Physics, 2002. 92.10: p. 6104-6109.
71. Ravelosona, D., et al., Chemical order induced by ion irradiation in FePt (001) films. Applied Physics Letters, 2000. 76: p. 236.
72. Lai, C.-H., Cheng-Han Yang, and C. C. Chiang., Ion-irradiation-induced direct ordering of L10 FePt phase. Applied physics letters, 2003. 83: p. 4550.
73. Wiedwald, U., et al., Lowering of the L10 ordering temperature of FePt nanoparticles by He+ ion irradiation. Applied physics letters, 2007. 90.6: p. 62508-62508.
74. Howe, B.F.a.J.M., Transmission Electron Microscopy and Diffractometry of Materials. 2002. Springer
75. 穿透式電子顯微鏡.
76. Kirkland, E.J., Advanced computing in electron in electron microscopy. 1998: p. 133-138.
77. 林智仁 and 羅聖全, 場發射穿透式電子顯微鏡簡介. 工業材料雜誌, 2003. 201期.
78. Manual of MacTempas.
79. 劉代康, 藉由第一原理分析CoSi(核)-SiO2(殼)奈米線界面與內部缺陷所導致的異常鐵磁性質. 國立清華大學材料科學工程研究所碩士論文, 2014.
80. JEMS software package that is developed by Pierre Stadelmann.
81. Simon, S.H., The Oxford Solid State Basics. Oxford University Press, 2013.
82. Hÿtch, M.J., E. Snoeck, and R. Kilaas, Quantitative measurement of displacement and strain Þelds from HREM micrographs. Ultramicroscopy, 1998. 74.3: p. 131-146.
83. Hÿch, M.J., and L. Potez. , Geometric phase analysis of high-resolution electron microscopy images of antiphase domains: example Cu3Au. Philosophical Magazine A, 1997. 76.6: p. 1119-1138.
84. Wang, Q., et al., Residual stress assessment of interconnects by slot milling with FIB and geometric phase analysis. Optics and Lasers in Engineering 2010. 48.11: p. 1113-1118.
85. Koch, C.T., Geometric Phase Analysis (GPA) Manual.
86. Cullity, B.D., Elements of X-RAY Diffraction. 2001.
87. CaRIne Crystallography http://carine.crystallography.pagespro-orange.fr/.
第三章參考文獻:
1. Veeco ion source (Technical Manual).
2. Kenny Liu, Ion Beam Source, Veeco.
3. Wang, L.W., Shih, W. C., Wu, Y. C., & Lai, C. H. , Promotion of [001]-oriented L10-FePt by rapid thermal annealing with light absorption layer. Applied Physics Letters, 2012. 101.25: p. 252403.
4. Roozeboom, F., Rapid Thermal and Other Short-time Processing Technologies: Proceedings of the International Symposium. 2000: p. 129-136.
5. Mini Lamp Annealer MILA-5000 series (Technical Manual).
6. 羅聖全, 電子顯微鏡試片製備技術總論. 工業材料雜誌, 2004. 206期.
7. Wang, S., Effect of Ni3Fe/(Ni, Fe)O Films with Nanoparticle and Bi-layer Structures on their Exchange Biases. 國立清華大學材料科學與工程學研究所碩士論文, 民國一百零二年.
8. 汪建民, 材料分析. 中國材料科學學會.
9. Suvorova, E.I., P. A. Stadelmann, and P-A. Buffat., HRTEM simulation in determination of thickness and grain misorientation for hydroxyapatite crystals. Crystallography Reports, 2004. 49.3: p. 343-352.
10. Cullity, B.D., Elements of X-RAY Diffraction. 2001.
11. CaRIne Crystallography http://carine.crystallography.pagespro-orange.fr/.
12. Cebollada, A., et al., Enhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experiment. Physical Review B, 1994. 50(5): p. 3419.
13. Christodoulides, J., et al., Magnetic, structural and microstructural properties of FePt/M (M= C, BN) granular films. IEEE transactions on magnetics, 2001. 37(4): p. 1292-1294.
14. Kusaka, K., Taniguchi, D., Hanabusa, T., & Tominaga, K., Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering. Vacuum, 2000. 59.2: p. 806-813.
15. Chen, J.S., Lim, B. C., Ding, Y. F., & Chow, G. M., Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording. Journal of magnetism and magnetic materials, 2006. 303.2: p. 309-317.
16. Rasmussen, P., Rui, X., & Shield, J. E., Texture formation in FePt thin films via thermal stress management. Applied Physics Letters, 2005. 86.19: p. 191915.
17. B.D.Cullity, Introduction to magnetic materials second edition. 2009.
18. Hsiao, S.N., Liu, S. H., Chen, S. K., Chin, T. S., & Lee, H. Y., Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films. Applied Physics Letters, 2012. 100.26: p. 261909.
19. Zak, A.K., Majid, W. A., Abrishami, M. E., & Yousefi, R., X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 2011. 13.1: p. 251-256.
20. Mote, V.D., Purushotham, Y., & Dole, B. N., Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 2012. 6.1: p. 1-8.
21. Stokes, A.R., and A. J. C. Wilson, The diffraction of X rays by distorted crystal aggregates-I. Proceedings of the Physical Society, 1944. 56.3: p. 174.
22. Rempel, A.I.G.a.A.A., Nanocrystalline Materials. 2004: p. 146-148.
23. Hüe, F., Hÿtch, M., Bender, H., Houdellier, F., & Claverie, A., Direct Mapping of Strain in a Strained Silicon Transistor by High-Resolution Electron Microscopy. PHYSICAL REVIEW LETTERS, 2008. 100.15: p. 156602.
24. Rouviere, J.L., & Sarigiannidou, E., Theoretical discussions on the geometrical phase analysis. Ultramicroscopy, 2005. 106.1: p. 1-17.
25. Prevey, P.S., X-ray diffraction residual stress techniques. ASM International, ASM Handbook, 1986. 10: p. 380-392.
26. Wang, Q., et al., Residual stress assessment of interconnects by slot milling with FIB and geometric phase analysis. Optics and Lasers in Engineering 2010. 48.11: p. 1113-1118.
27. 物理雙月刊24卷5期. 2002.
第四章參考文獻:
1. Hsiao, S.N., Liu, S. H., Chen, S. K., Chin, T. S., & Lee, H. Y., Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films. Applied Physics Letters, 2012. 100.26: p. 261909.
2. Mizuguchi, M., Sakurada, T., Tashiro, T. Y., Sato, K., Konno, T. J., & Takanashi, K., Fabrication of highly L10-ordered FePt thin films by low-temperature rapid thermal annealing. APL Materials, 2013. 1.3: p. 032117.
3. John R. McNeil, J.J.M., Paul D. Reader, Ion Beam Deposition.
4. Kusaka, K., et al., Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering. Vacuum, 2000. 59(2): p. 806-813.
5. Hsiao, S., et al., Effect of initial stress/strain state on order-disorder transformation of FePt thin films. Applied Physics Letters, 2009. 94(23): p. 232505.
6. Mei, J., et al., Effect of initial stress/strain state on formation of (001) preferred orientation in L10 FePt thin films. Journal of Applied Physics, 2011. 109(7): p. 07A737.
7. Kenny Liu, Ion Beam Source, Veeco.
8. Yamane, H., et al., Structural characterization for L10-ordered FePt films with (001) texture by x-ray diffraction. Journal of Applied Physics, 2010. 108(11): p. 113923.
9. Patel, N., Structure Property Relationships of Nitride Superlattice Hard Coatings prepared by Pulsed Laser Deposition. 2007: p. 40.
10. http://www.eod.gvsu.edu/eod/manufact/manufact-80.html#pgfId-148330.
11. Yan, M., et al., L1 0,(001)-oriented FePt: B2O3 composite films for perpendicular recording. David Sellmyer Publications, 2002: p. 45.
12. Seki, T., et al., L10 ordering of off-stoichiometric FePt (001) thin films at reduced temperature. Applied physics letters, 2003. 82(15): p. 2461-2463.
13. Aas, C., L. Szunyogh, and R. Chantrell, Effects of composition and chemical disorder on the magnetocrystalline anisotropy of FexPt1−x alloys. EPL (Europhysics Letters), 2013. 102(5): p. 57004.
14. Tamada, Y., et al., Effects of annealing time on structural and magnetic properties of L10-FePt nanoparticles synthesized by the SiO2-nanoreactor method. Journal of Magnetism and Magnetic Materials, 2007. 310(2): p. 2381-2383.
15. Wu, Y.-C., L.-W. Wang, and C.-H. Lai, (001) FePt nanoparticles with ultrahigh density of 10 T dots/in.2 on amorphous SiO2 substrates. Applied Physics Letters, 2008. 93(24): p. 2501.
16. Kim, J.S., Koo, Y. M., Lee, B. J., & Lee, S. R., The origin of (001) texture evolution in FePt thin films on amorphous substrates. Journal of applied physics, 2006. 99.5: p. 053906.
17. Wang, L.W., Shih, W. C., Wu, Y. C., & Lai, C. H. , Promotion of [001]-oriented L10-FePt by rapid thermal annealing with light absorption layer. Applied Physics Letters, 2012. 101.25: p. 252403.
18. Rasmussen, P., X. Rui, and J.E. Shield, Texture formation in FePt thin films via thermal stress management. Applied Physics Letters, 2005. 86(19): p. 191915.
19. B.D.Cullity, Introduction to magnetic materials second edition. 2009.
20. Atherton, D.L., and J. R. Beattie, A mean field Stoner-Wohlfarth hysteresis model. Magnetics, IEEE Transactions, 1990. 26.6: p. 3059-3063.
21. Zak, A.K., Majid, W. A., Abrishami, M. E., & Yousefi, R., X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 2011. 13.1: p. 251-256.
22. Mote, V.D., Purushotham, Y., & Dole, B. N., Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 2012. 6.1: p. 1-8.
23. Weller, D., High K u materials approach to 100 Gbits/in2. Magnetics, IEEE Transactions 2000. 36.1: p. 10-15.
24. Medwal, R., N. Sehdev, and S. Annapoorni, Order–disorder investigation of hard magnetic nanostructured FePt alloy. Journal of Physics D: Applied Physics, 2012. 45(5): p. 055001.
25. Hsu, C.W., Chen, S. K., Liao, W. M., Yuan, F. T., Chang, W. C., & Tsai, J. L. , Effect of Pt underlayer on the coercivity of FePt sputtered film. Journal of Alloys and Compounds, 2008. 449.1: p. 52-55.
26. Cebollada, A., et al., Enhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experiment. Physical Review B, 1994. 50(5): p. 3419.
27. Christodoulides, J., et al., Magnetic, structural and microstructural properties of FePt/M (M= C, BN) granular films. IEEE transactions on magnetics, 2001. 37(4): p. 1292-1294.
28. Rong, C.-b., et al., Size‐dependent chemical and magnetic ordering in L10‐FePt nanoparticles. Advanced Materials, 2006. 18(22): p. 2984-2988.
29. Ohring, M., Marterials Science of Thin Films second edition. 2002.
30. Yano, K., et al., Rapid thermal annealing of FePt nanoparticles. 2008.
31. Jourdan, T., et al., Magnetic domain wall pinning and coercivity in FePt/MgO and FePt/Pt thin films. Journal of Magnetism and Magnetic Materials, 2009. 321(14): p. 2187-2191.
32. Sablik, M.J., Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels. Journal of Applied Physics, 2001. 89.10: p. 5610-5613.
33. Kalita, M., A. Perumal, and A. Srinivasan, Microstructure and magnetic properties of nanocrystalline Fe75Si20M5 (M= Al, B, Cr) powders. Journal of Physics D: Applied Physics, 2008. 41(16): p. 165002.
34. Hsiao, C., et al., Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films. Applied Physics Letters, 2015. 107(14): p. 142407.
35. Menendez, E., et al., Improving the Magnetic Properties of Co–CoO Systems by Designed Oxygen Implantation Profiles. ACS applied materials & interfaces, 2013. 5.10: p. 4320-4327.
36. Hong, M., K. Hono, and M. Watanabe, Microstructure of FePt/Pt magneticthin films with high perpendicular coercivity. Journal of Applied Physics, 1998. 84(8): p. 4403-4409.
37. Attané, J., et al., Domain wall pinning on strain relaxation defects in FePt (001)/Pt thin films. Applied Physics Letters, 2001. 79(6): p. 794-796.
38. Jourdan, T., F. Lançon, and A. Marty, Pinning of magnetic domain walls to structural defects in thin layers within a Heisenberg-type model. Physical Review B, 2007. 75(9): p. 094422.
39. Takahashi, Y., et al., Microstructure and magnetic properties of FePt and Fe/FePt polycrystalline films with high coercivity. Journal of applied physics, 2004. 96(1): p. 475-481.
40. Luo, C., et al., Nanostructured FePt: B2O3 thin films with perpendicular magnetic anisotropy. 2000.
41. Gaunt, P., Ferromagnetic domain wall pinning by a random array of inhomogeneities. Philosophical Magazine B, 1983. 48(3): p. 261-276.
42. Wu, Y.-C., Control of microstructure in (001)-orientated FePt-SiO2 granular films. Journal of Applied Physics 2008. 103.7: p. 7E140.
43. Collins, S., et al., Magnetism and Synchrotron Radiation: New Trends. Springer Proceedings in Physics, 2010: p. 31-32.
44. Yu, Y., et al., One-Pot Synthesis of Urchin-like FePd–Fe3O4 and Their Conversion into Exchange-Coupled L10–FePd–Fe Nanocomposite Magnets. Nano letters, 2013. 13(10): p. 4975-4979.
45. L. M. Dedukh, M.V.I., and V. I. Nikitenko, Interaction of a dislocation with a domain wall produced by a gradient field in a magnetically uniaxial film. Journal of Experimental and Theoretical Physics, 1981. 53(1): p. 194-200.
46. Reza Abbaschian, R.E.R.-H., Physical Metallurgy Principles 4th Edition.
47. Dalla Torre, F., et al., Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta materialia, 2004. 52(16): p. 4819-4832.
48. Dalla Torre, F.H., et al., Grain size, misorientation, and texture evolution of copper processed by equal channel angular extrusion and the validity of the Hall–Petch relationship. Metallurgical and Materials Transactions A, 2007. 38(5): p. 1080-1095.
49. William D. Callister, J., Materials Science & Engineering An introduction 8th.
50. Nakamura, N., et al., Elastic constants of polycrystalline L10-FePt at high temperatures. Journal of Applied Physics, 2013. 114(9): p. 093506.
51. Ungár, T., et al., Correlation between subgrains and coherently scattering domains. Powder Diffraction, 2005. 20(04): p. 366-375.
52. Hüe, F., Hÿtch, M., Bender, H., Houdellier, F., & Claverie, A., Direct Mapping of Strain in a Strained Silicon Transistor by High-Resolution Electron Microscopy. PHYSICAL REVIEW LETTERS, 2008. 100.15: p. 156602.
53. Rouviere, J.L., & Sarigiannidou, E., Theoretical discussions on the geometrical phase analysis. Ultramicroscopy, 2005. 106.1: p. 1-17.
54. Friedenberger, N., Layer resolved Lattice Relaxation in Magnetic FexPt1− x Nanoparticles. 2007, Diplomarbeit, Department of physics, university Duisburg-Essen.
55. Hull, D. and D.J. Bacon, Introduction to dislocations. Vol. 37. 2011: Elsevier.
未來展望參考文獻:
1. Chen, J., et al., Low temperature deposited L10 FePt-C (001) films with high coercivity and small grain size. Applied Physics Letters, 2007. 91(13): p. 132506.
2. Perumal, A., Y. Takahashi, and K. Hono, FePt-C nanogranular films for perpendicular magnetic recording. Journal of Applied Physics, 2009. 105(7): p. 07B732.
3. Li, N. and B.M. Lairson, Magnetic recording on FePt and FePtB intermetallic compound media. IEEE transactions on magnetics, 1999. 35(2): p. 1077-1082.
4. Granz, S.D., K. Barmak, and M.H. Kryder, Granular L10 FePt: X (X= Ag, B, C, SiOx, TaOx) thin films for heat assisted magnetic recording. The European Physical Journal B, 2013. 86(3): p. 1-7.
5. Wu, Y.-C., Liang-Wei Wang, Chih-Huang Lai., Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers. Applied Physics Letters, 2007. 91.7: p. 2502.
6. Wu, Y.-C., Control of microstructure in (001)-orientated FePt-SiO2 granular films. Journal of Applied Physics 2008. 103.7: p. 7E140.
7. Ding, Y., et al., Granular L10 FePt: TiO2 (001) nanocomposite thin films with 5nm grains for high density magnetic recording. Applied Physics Letters, 2008. 93(3): p. 32506-32900.
8. Wang, L.W., Shih, W. C., Wu, Y. C., & Lai, C. H. , Promotion of [001]-oriented L10-FePt by rapid thermal annealing with light absorption layer. Applied Physics Letters, 2012. 101.25: p. 252403.
9. Albrecht, M. and C. Brombacher, Rapid thermal annealing of FePt thin films. physica status solidi (a), 2013. 210(7): p. 1272-1281.
10. Liao, J.-W., et al., Highly (001)-oriented thin continuous L10 FePt film by introducing an FeOx cap layer. Applied Physics Letters, 2013. 102(6): p. 062420.
11. McCallum, A., et al., Prevention of dewetting during annealing of FePt films for bit patterned media applications. Applied Physics Letters, 2012. 101(9): p. 092402.