研究生: |
羅祥愷 Hsiang-Kai Lo |
---|---|
論文名稱: |
使用動態故障樹於嵌入式系統之可靠性與敏感度評估 Reliability and Sensitivity Analysis of Embedded Systems Using Dynamic Fault Trees |
指導教授: |
黃慶育
Chin-Yu Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 動態錯誤樹 、馬可夫模型 、可靠度分析 、敏感度分析 |
外文關鍵詞: | Dynamic fault tree, Markov model, Reliability analysis, Sensitivity analysis |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來故障樹的理論被廣泛地使用著,因為它俱有能夠簡單且具體地呈現出普遍電腦容錯系統在運作時可能產生的錯誤行為的能力。但傳統的故障樹理論在進行分析某些有著自動從錯誤中回復的系統設計時,會因為無法正確描述這種含有順序相性的動態的錯誤行為,而造成分析的評估結果不準確。但我們仍就可以透過使用行為分解(Behavioral Decomposition)這一類的理論來解決這個問題。在行為分解這一類的理論前提下,一個系統將被劃分為許多動態和靜態的子模組,每個子模組再依照其類型為動態或是靜態的分類,而分別使用二元決定圖(Binary Decision Diagram)或馬可夫鏈(Markov Chains)這兩種理論來進行模組可靠度與敏感度的後續分析與求值。在這篇論文中,我們將提出一種新的分解(Decomposition)的方法,這種分解方法可以從一個動態子模組中,更深一層地嘗試去辨斷且標示出錯誤行為上獨立的子樹,再藉由階層式的解算法求出模組可靠度與模組內各元件的敏感度,這種方法在原理上是利用化簡馬可夫模型的狀態空間(state space)來節省馬可夫鏈矩陣運算時所花費的計算時間,同時產生的元件敏感度誤差也是在可調整的控制範圍內。最後將介紹我們以這個方法為理論基礎所開發出來的一套動態故障樹分析自動化軟體套件: DyFA (Dynamic Fault-trees Analyzer)。
Fault trees theories have been used in years because they can easily provide a concise representation of failure behavior of general non-repairable fault-tolerant systems. But the defect of traditional fault trees is lack of accuracy when modeling sequence-dependent dynamic failure behavior of certain systems with fault-recovery process. A solution to this problem is called behavioral decomposition. A system will be divided into several dynamic or static modules, and each module can be further analyzed using BDD or Markov Chains separately. In this paper, we will show a decomposition scheme that independent subtrees of a dynamic module are detected and solved hierarchically for saving computation time of solving Markov Chains by reducing the state space of Markov model but without losing unacceptable accuracy when assessing components sensitivities. In the end, we present our analyzing software toolkit: DyFA (Dynamic Fault-trees Analyzer) which implements our enhanced methodology.
[1] Y. Dutuit, A. Rauzy, “A Linear Time Algorithm to Find Modules of Fault Trees,” IEEE Transactions on Reliability, vol. 45, no. 3, 1996, pp 422-425.
[2] R. Gulati, J.B. Dugan, “A Modular Approach for Analyzing Static and Dynamic Fault Trees,” IEEE Proceedings of the Reliability and Maintainability Symposium, 1997, pp 57-63.
[3] J.B. Dugan, S.J. Bavuso, M.A. Boyd, “Dynamic Fault-Tree Models for Fault-Tolerant Computer System,” IEEE Transactions on Reliability, vol. 41, 1992, pp 363-377.
[4] R. Manian, D.W. Coppit, K.J. Sullivan, J.B. Dugan, “Bridging the Gap Between Systems and Dynamic Fault Tree Models,” IEEE Proceedings of the Reliability and Maintainability Symposium, Jan 1999, pp 105-111
[5] J.B. Dugan, K.J. Sullivan, D.W. Coppit, “Developing a Low-Cost High-Quality Software Tool for Dynamic Fault-Tree Analysis,” IEEE Transactions on Reliability, vol. 49, March 2000, pp 49-59.
[6] A. Reibman, K.S. Trivedi, “Numerical Transient Analysis of Markov Models,” Computers and Operations Research, vol. 15, no. 1, 1998, pp 19-36.
[7] K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Prentice-Hall, Englewood Cliffs, N.J.
[8] S. Amari, G. Dill, E. Howald, “A New Approach To Solve Dynamic Fault Trees,” IEEE Proceedings of the Reliability and Maintainability Symposium, 2003, pp 374-379.
[9] A. Anand, A.K. Somani, “Hierarchical Analysis of Fault Trees with Dependencies, using Decomposition,” IEEE Proceedings of the Reliability and Maintainability Symposium, 1998, pp 69-75.
[10] M.A. Boyd, “Dynamic Fault Tree Models: Techniques for Analysis of Advanced Fault Tolerant Computer Systems,” Ph.D. Dissertation, Department of Computer Science, Duke University, 1991.
[11] R.E. Tarjan, “Depth first search and linear graph algorithms,” SIAM J. Comput.., vol. 1, 1972, pp 146-160.
[12] Y. Ou, J.B. Dugan, “Sensitivity Analysis of Modular Dynamic Fault Trees,” Computer Performance and Dependability Symposium, 2000. IPDS 2000. Proceedings. IEEE International , 27-29 March 2000, pp 35-43.
[13] Y.J. Ren, J.B. Dugan, “Optimal Design of Systems Using Static and Dynamic Fault Trees,” IEEE Transactions on Reliability, vol. 3, December, 1998, pp 234-244.
[14] S.D. Cohen, A.C. Hindmarsh. “CVODE, a Stiff/Nonstiff ODE Solver in C,” Computers in Physics March/April 1996.
[15] R. Manian, J.B. Dugan, D. Coppit and K.J. Sullivan, “Combining Various Solution Techniques for Dynamic Fault Tree Analysis of Computer Systems,” High-Assurance Systems Engineering Symposium, 1998. Proceedings. Third IEEE International , 13-14 Nov. 1998, pp 21-28.
[16] J.B. Fussell, E.F. Aber, R.G. Rahl, “On the quantitative analysis of priority-AND failure logic”, IEEE Transactions on Reliability, vol. R-25, 1976 Dec, pp 324-326
[17] K. Brace, R. Rudell, R. Bryant, “Efficient implementation of a BDD package”, Proceedings of 27th ACM/IEEE Design Automation Conference, 1990.
[18] O. Coudert, J.C. Madre, “MetaPrime: An Interactive fault tree analyzer”, IEEE Transaction on Reliability, vol. 43, 1994 Mar, pp 121-127
[19] L. Camarinopoulos, J. Yllera, “An Improved Top-Down Algorithm Combined with Modularization as Highly Efficient Method for Fault Tree Analysis”, Reliability Engineering, vol. 11, 1985, pp 93-108
[20] T. Kohda, E.J. Henley, K. Inoue, “Finding Modules in Fault Trees”, IEEE Transaction on Reliability, vol. 38, 1989 Jun, pp 165-176
[21] A. Rosenthal, “Decomposition Methods for Fault Tree Analysis”, IEEE Transaction on Reliability, vol. R-29, 1980 Jun, pp 136-138
[22] J. Yllera, “Modularization Method for Evaluating Fault Trees of Complex Technical Systems”, Engineering Risk and Hazard Assessment (A. Kandel, E. Avni, Eds), vol. 2, 1988, chapter 5; CRC Press.
[23] S.D. Cohen, A.C. Hindmarsh, “CVODE, a stiff/nonstiff ODE solver in C”, Computers in Physics, American Institute of Physics Inc. Woodbury, NY, USA, 1996
[24] P.N. Brown, G..D. Byrne, A.C. Hindmarsh, “VODE, a Variable-Coefficient ODE Solver”, SIAM J. Sci.Stat. Comput., 1989 Oct, pp. 1038-1051
[25] P.N. Brown, A.C. Hindmarsh, “Reduced Storage Matrix Methods in Stiff ODE Systems”, J. Appl. Math. &Comp. 1989 , pp. 40-91
[26] G.D. Byrne, “Pragmatic Experiments with Kolmogorov Methods in the Stiff ODE Setting”, Computational Ordinary Differential Equations (J. R. Cash and I. Gladwell) Eds. , Oxford University Press, Oxford, 1992,pp. 323-356.
[27] S.D. Cohen and A.C. Hindmarsh, “CVODE User Guide”, Lawrence Livermore National Laboratory report UCRL-MA-118618, September 1994.
[28] Y. Saad, M.H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for Solving Non-symmetric Linear Systems”, SIAM J. Sci. Stat. Comp. 1986 July, pp. 856-869
[29] J.B. Dugan, K.S. Trivedi, M.K. Smotherman, R.M. Geist, “The Hybrid Automated Reliability Predictor”, AIAA Journal of Guidance, Control and Dynamics, vol. 9, no. 3, May-June 1986, pp. 319-331
[30] A.K. Somani, U.R. Sandadi, A. Gupta, P.C. Leung, “EHARP: Enhanced Hybrid Automated Reliability Predictor”, Tech Report, DPNCL, University of Washington, Seattle, Dec 1993
[31] G. Krishnamurthi, A. Gupta, A.K. Somani, “The HIMAP Modeling Environment”, Proceedings of Parallel and Distributed Computing Systems, France, Sept 1996, pp. 254-260
[32] J.B. Dugan, K.J. Sullivan, D. Coppit, “Developing a Low-Cost High-Quality Software Tool for Dynamic Fault Tree Analysis”, IEEE Transaction on Reliability, vol. 49, March 2000, pp. 422-425
[33] J.B. Dugan, B. Venkataraman, R. Gulati, “DIFtree- A Software Package for the Analysis of Dynamic Fault Tree Models”, IEEE Annual Reliability and Maintainability Symposium, 1997, pp. 64-70
[34] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York (1969)
[35] R. Geist, K.S. Trivedi, “Ultra-High Reliability Prediction for Fault-Tolerant Computer Systems”, IEEE Transaction on Computers, 1983, pp. 1118-1127
[36] V. Kulkarni, V.F. Nicola, R.M. Smith, K.S. Trivedi, “Numerical Evaluation of Performability Measures and Job Completion Time in Repairable Fault-Tolerant Systems”, Proceedings of the IEEE 16th International Symposium on Fault-Tolerant Computing, Vienna Austria, July 1986
[37] W.K. Grassmann, “Transient Solution in Markovian queueing systems”, Comput. Opns. Res. 4, 1977, pp. 47-56
[38] J.H. Cartwright, O. Piro, "The Dynamics of Runge-Kutta Methods", Int. J. Bifurcations Chaos 2, 1992, pp. 427-449
[39] J.D. Lambert, D. Lambert, Ch. 5 in Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, New York: Wiley, 1991.
[40] G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, Md, 1983