簡易檢索 / 詳目顯示

研究生: 余律明
Yu, Lu-Ming
論文名稱: 建立中耳至腦幹之聽覺生理模型並利用特定頻率延遲之tuberculoventral抑制模擬耳蝸反遮蔽效應
Establishing a biophysical auditory model from middle ear to brainstem and simulating the unmasking response of cochlea by delayed, frequency specific tuberculoventral inhibition
指導教授: 劉奕汶
Liu, Yi-Wen
口試委員: 劉欽岳
Liu, Chin-Yueh
鐘太郎
Jong, Tai-Lang
冀泰石
Chi, Tai-Shih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 115
中文關鍵詞: 聽覺生理模型反遮蔽效應相位鎖定
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文欲建立一符合真實聽覺生理結構的生物物理模型,並期望藉由此模型模擬出多項符合真實人體聽覺之現象。以Liu and Neely於2009與2010年提出的中耳至內耳耳蝸與外毛細胞模型為基礎,串連多個已廣泛使用的聽覺生理模型(Meddis, 1986、Sumner et al., 2002、Hewitt et al., 1992)以及自行提出的新穎模型-特定頻率延遲抑制的Tuberculoventral細胞模型,建構出中耳至腦幹的聽覺迴路系統。
    Tuberculoventral細胞與T型多極細胞在耳蝸核的分布均為tonotopic的型式,故不同位置有不同的最佳共振頻率, Tuberculoventral細胞可對相同特徵頻率點的T型多極細胞進行延遲性的抑制。若輸入聲刺激為一純音且低頻,在對應的特徵頻率點處聽覺神經會規律性的觸發而具有相位鎖定特性。因Tuberculoventral細胞與T型多極細胞的輸入均來自同一組的聽覺神經,故藉由Tuberculoventral細胞提供的特定頻率延遲抑制,可針對T型多極細胞相位鎖定周期上的穩定觸發進行抑制。又因內側橄欖-耳蝸中繼神經元的輸入來自T型多極細胞,此抑制便會降低內側橄欖-耳蝸中繼神經元的觸發次數,間接降低其提供給耳蝸的遮蔽效應。若輸入聲刺激為不規律之底噪,因其不具有相位鎖定特性,Tuberculoventral細胞無法針對T型多極細胞提供有效抑制,使內側橄欖-耳蝸中繼神經元提供給耳蝸的遮蔽效應不受影響。此抑制上的差異便可對底噪與純音進行不同程度的遮蔽,模擬出內側橄欖-耳蝸中繼神經元提供給耳蝸的反遮蔽效應。


    This thesis describes efforts to establish a biophysical model which corresponds to the real physiological structure of the auditory system. By using this model, a lot of phenomena in true human hearing can be simulated. Based on the models of the middle ear to the cochlea and outer hair cells (Liu and Neely, 2009, 2010), we integrate several auditory models (Meddis, 1986; Sumner et al., 2002; Hewitt et al., 1992) and a new model-a tuberculoventral(TUB) cell model with delayed, frequency-specific inhibition-to construct the auditory pathway from middle ear to the brainstem.
    In the cochlear nucleus, TUB cells and T-multipolar cells are distributed tonotopically. In other words, every TUB cell and T-multipolar cell in different place has its own best resonance frequency. The T-multipolar cell can be inhibited by TUB cell which has the same best resonance frequency. If the acoustic stimulation is a pure tone of low frequency, the corresponding auditory nerve fibers will fire regularly and generate a special effect called phase locking. Because TUB cells and T-multipolar cells receive input from the same group of auditory nerve fibers, the delayed, frequency-specific inhibition of TUB cells can suppress the stable triggering in the phase locking cycle of T-multipolar cells. Since the input of medial olivocochlear(MOC) interneurons are from T-multipolars, this inhibition can lower the firing rate of MOC interneurons and cause the masking effect in the cochlea to reduce indirectly. If the acoustic stimulation is irregular background noise, there is no phase locking effect, so the TUB cells can not inhibit the T-multipolars effectively. Therefore the masking effect in the cochlea from MOC interneurons will be unaffected. The discrepancy of the inhibition from TUB cells can cause different masking intensity between background noise and pure tone, so the unmasking effect in the cochlea from MOC interneurons can be simulated.

    中文摘要 I Abstract II 誌謝 III 目次 IV 圖附錄 VI 第一章 緒論 10 1.1 研究動機與目的 10 1.2 研究內容 11 1.3 論文架構 11 第二章 聽覺生理結構簡介 12 2.1 聽覺系統簡介 - 外耳至腦幹迴路 12 2.2 外耳(Outer Ear)與中耳(Middle Ear) 13 2.3 耳蝸(Cochlea) 14 2.4 聽覺神經與內毛細胞 17 2.5 耳蝸核(Cochlear Nucleus) 20 2.6 內側橄欖-耳蝸中繼神經元(Medial Olivocochlear Interneurons, MOC) 23 2.7 時間編碼(Temporal Coding)-相位鎖定(Phase Locking) 25 2.8 特殊圖型介紹 26 第三章 參考模型之建構與結果分析 28 3.1 整體模型架構簡介:中耳至內側橄欖-耳蝸中繼神經元 28 3.2 Liu and Neely Model - 中耳至內耳耳蝸及外毛細胞模型 31 3.2.1 模型建構流程與說明 31 3.2.2 Liu and Neely Model模擬結果 41 3.2.3 Liu and Neely Model評比 43 3.3 Meddis Model - 聽覺神經模型 44 3.3.1 模型建構流程與說明 44 3.3.2 Meddis Model模擬結果 47 3.3.3 Meddis Model評比 51 3.4 Sumner et al. Model - 中耳至聽覺神經模型 51 3.4.1 模型建構流程與說明 52 3.4.2 Sumner et al. Model 模擬結果 67 3.4.3 Sumner et al. Model評比 74 3.5 Hewitt et al. Model - T型多極細胞模型 75 3.5.1 模型建構與流程說明 75 3.5.2 Hewitt et al. Model 模擬結果 79 3.5.3 Hewitt et al. Model評比 81 第四章 自創模型之建構與結果分析 82 4.1 Proposed Model - Tuberculoventral 細胞模型 82 4.2 模型建構流程與說明 85 4.3 Proposed Model模擬結果 89 4.4 Proposed Model探討-高頻抑制效果低落的補償辦法 96 第五章 結論與未來展望 98 5.1 結論 98 5.2 未來展望 99 參考文獻 102 附錄一 中耳至內耳耳蝸及外毛細胞模型係數設定 110 附錄二 內毛細胞與聽覺神經模型係數設定 112 附錄三 T型多極細胞模型係數設定 114 附錄四 TUB細胞模型係數設定 115

    參考文獻
    [1] Hodgkin, A. L. and A. F. Huxley (1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve." J. Physiol 117: 500-544.
    [2] Squire, L. R. (2008). Fundamental neuroscience. Amsterdam ; Boston, Elsevier / Academic Press.
    [3] Raphael, Y. and R. A. Altschuler (2003). "Structure and innervation of the cochlea." Brain Res Bull 60(5-6): 397-422.
    [4] Vonbekesy, G. (1949). "The Vibration of the Cochlear Partition in Anatomical Preparations and in Models of the Inner Ear." Journal of the Acoustical Society of America 21(3): 233-24
    [5] Young, E. D. and D. Oertel (2004). Chap. 4 The cochlear nucleus. In Shepherd, G. M., The synaptic organization of the brain(pp.125-171). Oxford ; New York, Oxford University Press.
    [6] Fuchs, P. A., E. Glowatzki, et al. (2003). "The afferent synapse of cochlear hair cells." Curr Opin Neurobiol 13(4): 452-458.
    [7] Meyer, A. C. and T. Moser (2010). "Structure and function of cochlear afferent innervation." Curr Opin Otolaryngol Head Neck Surg 18(5): 441-446.
    [8] Moser, T., A. Brandt, et al. (2006). "Hair cell ribbon synapses." Cell Tissue Res 326(2): 347-359.
    [9] Guinan J. J. (2011). Chap. 3 physiology of the Medial and Lateral Olivocochlear Systems. In Ryugo, D. K., R. R. Fay, et al. Auditory and vestibular efferents(pp39-81). New York, Springer.
    [10] Wever, E. G. and C. W. Bray (1930). "Present possibilities for auditory theory." Psychological Review 37: 365-380.
    [11] Johnson, D. H. (1980). "The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones." J Acoust Soc Am 68(4): 1115-1122.
    [12] Shera, C. A. (2007). "Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea." J Acoust Soc Am 122(5): 2738-2758.
    [13] Hudspeth, A. (1997). "Mechanical amplification of stimuli by hair cells." Curr Opin Neurobiol 7(4): 480-486.
    [14] Brownell, W. E., C. R. Bader, et al. (1985). "Evoked mechanical responses of isolated cochlear outer hair cells." Science 227(4683): 194-196.
    [15] Ashmore, J. F. (1987). "A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier." J Physiol 388: 323-347.
    [16] Liu, Y. W. and S. T. Neely (2009). "Outer hair cell electromechanical properties in a nonlinear piezoelectric model." J Acoust Soc Am 126(2): 751-761.
    [17] Liu, Y. W. and S. T. Neely (2010). "Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells." J Acoust Soc Am 127(4): 2420-2432.
    [18] Kemp, D. T. (1978). "Stimulated acoustic emissions from within the human auditory system." J Acoust Soc Am 64(5): 1386-1391.
    [19] Zweig, G. and C. A. Shera (1995). "The origin of periodicity in the spectrum of evoked otoacoustic emissions." J Acoust Soc Am 98(4): 2018-2047.
    [20] Rhode, W. S. and L. Robles (1974). "Evidence from Mossbauer experiments for nonlinear vibration in the cochlea." J Acoust Soc Am 55(3): 588-596.
    [21] Matthews, J. W. (1983). “Modeling reverse middle ear transmission of acoustic distortion signals,” in Mechanics of Hearing, edited by E. de Boer and M. A. Viergever Delft University Press, Delft_, pp. 11–18.
    [22] Zwislocki, J. (1962). “Analysis of the middle-ear function. Part I: Input impedance,” J. Acoust. Soc. Am. 34, 1514–1523.
    [23] Santos-Sacchi, J. (1991). "Reversible inhibition of voltage-dependent outer hair cell motility and capacitance." J Neurosci 11(10): 3096-3110.
    [24] Scherer, M. P. and A. W. Gummer (2004). "Vibration pattern of the organ of Corti up to 50 kHz: evidence for resonant electromechanical force." Proc Natl Acad Sci U S A 101(51): 17652-17657.
    [25] Mountain, D. C. and A. E. Hubbard (1994). "A piezoelectric model of outer hair cell function." J Acoust Soc Am 95(1): 350-354.
    [26] Kennedy, H. J., A. C. Crawford, et al. (2005). "Force generation by mammalian hair bundles supports a role in cochlear amplification." Nature 433(7028): 880-883.
    [27] Tinevez, J. Y., F. Julicher, et al. (2007). "Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell." Biophys J 93(11): 4053-4067.
    [28] Ricci, A. J., H. J. Kennedy, et al. (2005). "The transduction channel filter in auditory hair cells." J Neurosci 25(34): 7831-7839.
    [29] Dallos, P. (1973). The auditory periphery; biophysics and physiology. New York,, Academic Press.
    [30] Ruggero, M. A., N. C. Rich, et al. (1997). "Basilar-membrane responses to tones at the base of the chinchilla cochlea." J Acoust Soc Am 101(4): 2151-2163.
    [31] Meddis, R. (1986). "Simulation of mechanical to neural transduction in the auditory receptor." J Acoust Soc Am 79(3): 702-711.
    [32] Westerman, L. A. (1985). "Adaptation and recovery of auditory nerve responses," Special Rep. ISR-S-24. Institute for Sensory Research, Syracuse
    University, Syracuse, NY.
    [33] Palmer, A. R. and I. J. Russell (1986). "Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells." Hear Res 24(1): 1-15.
    [34] Sumner, C. J., E. A. Lopez-Poveda, et al. (2002). "A revised model of the inner-hair cell and auditory-nerve complex." J Acoust Soc Am 111(5 Pt 1): 2178-2188.
    [35] Meddis, R., L. P. O'Mard, et al. (2001). "A computational algorithm for computing nonlinear auditory frequency selectivity." J Acoust Soc Am 109(6): 2852-2861.
    [36] de Boer, E. and H. R. de Jongh (1978). "On cochlear encoding: potentialities and limitations of the reverse-correlation technique." J Acoust Soc Am 63(1): 115-135.
    [37] Carney, L. H. and T. C. Yin (1988). "Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model." J Neurophysiol 60(5): 1653-1677.
    [38] Lopez-Poveda, E. A. and R. Meddis (2001). "A human nonlinear cochlear filterbank." J Acoust Soc Am 110(6): 3107-3118.
    [39] Meddis, R. (2006). "Auditory-nerve first-spike latency and auditory absolute threshold: a computer model." J Acoust Soc Am 119(1): 406-417.
    [40] Shamma, S. A., R. S. Chadwick, et al. (1986). "A biophysical model of cochlear processing: intensity dependence of pure tone responses." J Acoust Soc Am 80(1): 133-145.
    [41] Dallos, P., and Santos-Sacchi, J. (1983). "AC receptor potentials from hair cells in the low-frequency region of the guinea pig cochlea," in Mechanisms of Hearing, edited by W. Webster and L. Aitkin (Monash U. P., Australia).
    [42] Sellick, P. M. and I. J. Russell (1980). "The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea." Hear Res 2(3-4): 439-445.
    [43] Sellick, P. M., R. Patuzzi, et al. (1982). "Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound." Hear Res 7(2): 199-221.
    [44] Mountain D. C., and Hubbard, A. E. (1996). ‘‘Computational analysis of hair cell and auditory nerve processes,’’ in Auditory Computation edited by H. L. Hawkins, T. A. McMullen, A. N. Popper, and R. R. Fay (Springer, New York).
    [45] Russell, I. J., A. R. Cody, et al. (1986). "The Responses of Inner and Outer Hair-Cells in the Basal Turn of the Guinea-Pig Cochlea and in the Mouse Cochlea Grown-Invitro." Hear Res 22(1-3): 199-216.
    [46] Hudspeth, A. J. and R. S. Lewis (1988). "Kinetic-Analysis of Voltage-Dependent and Ion-Dependent Conductances in Saccular Hair-Cells of the Bull-Frog, Rana-Catesbeiana." Journal of Physiology-London 400: 237-274.
    [47] Kidd, R. C., and Weiss, T. F. (1990). ‘‘Mechanism that degrade timing information in the cochlea,’’ Hear. Res. 49, 181–208.
    [48] Johnston, D. and S. M.-s. Wu (1995). Foundations of cellular neurophysiology. Cambridge, Mass., MIT Press.
    [49] Katz, B. (1969). The release of neural transmitter substances. Springfield, Ill.,, Thomas.
    [50] Siegel, J. H. (1992). "Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea." Hear Res 59(1): 85-92.
    [51] Dayan, P. and L. F. Abbott (2001). Theoretical neuroscience : computational and mathematical modeling of neural systems. Cambridge, Mass., Massachusetts Institute of Technology Press.
    [52] Sumner, C. J., E. A. Lopez-Poveda, et al. (2003). "Adaptation in a revised inner-hair cell model." J Acoust Soc Am 113(2): 893-901.
    [53] Hewitt, M. J., R. Meddis, et al. (1992). "A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli." J Acoust Soc Am 91(4 Pt 1): 2096-2109.
    [54] MacGregor, R. J. (1987). Neural and brain modeling. San Diego, Calif., Academic Press.
    [55] Arle, J. E. and D. O. Kim (1991). "Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons." Biol Cybern 64(4): 273-283.
    [56] Smith, P. H. and W. S. Rhode (1989). "Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus." J Comp Neurol 282(4): 595-616.
    [57] Cant, N. B. (1981). "The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat." Neuroscience 6(12): 2643-2655.
    [58] Oertel, D. (1985). "Use of brain slices in the study of the auditory system: spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse." J Acoust Soc Am 78(1 Pt 2): 328-333.
    [59] Blackburn, C. C. and M. B. Sachs (1989). "Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis." J Neurophysiol 62(6): 1303-1329.
    [60] Joris, P. X., L. H. Carney, et al. (1994). "Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency." J Neurophysiol 71(3): 1022-1036.
    [61] Rothman, J. S. and P. B. Manis (2003). "The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons." J Neurophysiol 89(6): 3097-3113.
    [62] Wickesberg, R. E. and D. Oertel (1988). "Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice." J Comp Neurol 268(3): 389-399.
    [63] Wickesberg, R. E. and D. Oertel (1990). "Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression." J Neurosci 10(6): 1762-1768.
    [64] Wu, S. H. and D. Oertel (1986). "Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine." J Neurosci 6(9): 2691-2706.
    [65] Wickesberg, R. E. (1996). "Rapid inhibition in the cochlear nuclear complex of the chinchilla." J Acoust Soc Am 100(3): 1691-1702.
    [66] Kros, C. J. and A. C. Crawford (1990). "Potassium currents in inner hair cells isolated from the guinea-pig cochlea." J Physiol 421: 263-291.
    [67] Lopez-Poveda, E. A. and A. Eustaquio-Martin (2006). "A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression." J Assoc Res Otolaryngol 7(3): 218-235.
    [68] Bliss, T. V. and T. Lomo (1973). "Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path." J Physiol 232(2): 331-356.
    [69] Delgutte B. (1997). Chap 16. Auditory Neural Processing of Speech. In Hardcastle, W. J. and J. Laver, The Handbook of phonetic sciences(pp507-538). Oxford, UK ; Malden, Mass., Blackwell Publishers.
    [70] Winslow, R.L., Barta, P.E., and Sachs, M.B. (1987). Rate coding in the auditory nerve. In W.A. Yost and C.S. Watson (eds), Auditory Processing of Complex Sounds (pp. 212-224). Hillsdale, NJ: Erlbaum.
    [71] Jeffress, L. A. (1948). "A Place Theory of Sound Localization." Journal of Comparative and Physiological Psychology 41(1): 35-39.
    [72] Jeffress, L. A. (1958). "Medial Geniculate Body - a Disavowal." Journal of the Acoustical Society of America 30(8): 802-803.
    [73] Oertel, D. and E. D. Young (2004). "What's a cerebellar circuit doing in the auditory system?" Trends in Neurosciences 27(2): 104-110.
    [74] Lee, S. W., O. Briklin, et al. (2007). "Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken." Journal of Physiology-London 583(3): 909-922.
    [75] Kummer, P., T. Janssen, et al. (1998). "The level and growth behavior of the 2 f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss." J Acoust Soc Am 103(6): 3431-3444.
    [76] Plack, C. J., A. J. Oxenham, et al. (2005). Pitch : neural coding and perception. New York, Springer.
    [77] Bendor, D. and X. Wang (2006). "Cortical representations of pitch in monkeys and humans." Curr Opin Neurobiol 16(4): 391-399.
    [78] Rabiner, L. R. (1989). "A Tutorial on Hidden Markov-Models and Selected Applications in Speech Recognition." Proceedings of the Ieee 77(2): 257-286.
    [79] Brown, G. J., R. T. Ferry, et al. (2010). "A computer model of auditory efferent suppression: Implications for the recognition of speech in noise." Journal of the Acoustical Society of America 127(2): 943-954.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE