研究生: |
杜婷婷 Tu, Ting-Ting |
---|---|
論文名稱: |
EcoGinie: On-Node Integration Enhancement for Packet Loss Recovery in Gyrofree Inertial Measurement Unit EcoGinie: 利用節點積分實現無陀螺儀慣性測量儀上之封包遺失復原機制 |
指導教授: |
周百祥
Chou, Pai H. |
口試委員: |
石維寬
彭文志 周百祥 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 動作追蹤 、加速度計 、無陀螺儀慣性測量儀 、節點積分 、封包遺失復原 |
外文關鍵詞: | Motion Tracking, Accelerometer, Gyrofree Inertial Measurement Unit, On-Node Integration, Packet Loss Recovery |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在以慣性為基礎的絕對運動追蹤系統中,移動和旋轉的速度及位移是由加速度與時間一次及二次積分計算得到,因此任何錯誤和不確定性都具有累積性。在一個透過無線方式傳輸加速度數值的系統中,封包遺失會隨著時間造成錯誤累積。在這篇論文中,我們提出EcoGinie,一個在動作辨識系統內、特別為無陀螺儀慣性測量儀所設計的封包遺失回復機制。它利用了無陀螺儀慣性測量儀之微控制器和軟體,實做出節點積分技術,幫助恢復遺失的數據。此外,EcoGinie也引入了前向錯誤訂正(Forward Error Correction)的概念,在封包內增加了冗餘,提供錯誤修正的能力。我們模擬了封包遺失的環境,並且用各種遺失率評估了兩種遺失模式;隨機以及突發數據遺失,實驗結果證明EcoGinie有效地將線性運動內因封包遺失造成的錯誤回復,尤其是突發數據遺失發生在動作發生瞬間的效果最佳。
In inertia-based absolute motion tracking systems, the linear and angular velocities and displacements are calculated from integration and double integration of acceleration data over time, respectively. Therefore, any errors and uncertainties of the process are cumulative. In a system where acceleration is transmitted wirelessly, packet loss results in rapid error accumulation over time. In this thesis, we present EcoGinie, a packet loss recovery scheme designed for gyrofree inertial measurement unit (GF-IMU) in motion tracking applications. It performs on-node integration that utilizes the MCU and software of GF-IMU and to help recover the data from lost packets. Furthermore, EcoGinie also incorporates the idea of Forward Error Correction (FEC) and adds redundancy in the packets to enable the host to correct errors. We simulate the packet loss environment and evaluate two kinds of packet loss pattern: random and bursty packet loss with various packet loss rates. The experimental results show EcoGinie recovers from the tracking distortions in linear motion especially when bursty loss happens at the moment the motion occurs.
[1] AHLSWEDE, R., CAI, N., LI, S.-Y. R., AND YEUNG, R. W. Network information flow. IEEE Transactions on Information Theory 46, 4 (July 2000), 1204–1216.
[2] ANG, W.-T., KHOSLA, P., AND RIVIERE, C. Design of all-accelerometer inertial measurement unit for tremor sensing in hand-held microsurgical instrument. In IEEE International Conference on Robotics and Automation (September 2003), pp. 1781–1786.
[3] BANG, W., CHANG, W., KANG, K., CHOI, E., POTANIN, A., AND KIM, D. Self-contained spatial input device for wearable computers. In Proceedings of the 7th IEEE International Symposium on Wearable Computers (2003), p. 26.
[4] BONFIGLIO, A., AND DE ROSSI, D. Wearable Monitoring Systems. Springer, 2010.
[5] CHEN, C.-Y., CHEN, Y.-T., TU, Y.-H., SHUN-YAO, Y., AND CHOU, P. H. EcoSpire: An application development kit for an ultra-compact wireless sensing system. IEEE Embedded Systems Letters 1, 3 (October 2006), 65–68.
[6] CHEN, J.-H., LEE, S.-C., AND DEBRA, D. B. Gyroscope free strapdown inertial measurement unit by six linear accelerometers. Journal of Guidance, Control, and Dynamics 17, 2 (March–April 1994).
[7] FRAGOULI, C., YVES LE BOUDEC, J., AND WIDMER, J. Network coding: An instant primer. Computer Communication Review 36 (January 2006), 63–68.
[8] GUO, Z., WANG, B., AND HONG CUI, J. Efficient error recovery with network coding in underwater sensor networks. Tech. rep., December 2006.
[9] HANG LIU, HAIRUO MA, M. E. Z., AND GUPTA, S. Error control schemes for networks: An overview, 1997.
[10] HAUER, J.-H., WILLIG, A., AND WOLISZ, A. Mitigating the effects of RF interference through RSSI-based error recovery. In European Workshop on Wireless Sensor Networks (February 2010), pp. 224–239.
[11] HUYGHE, B., DOUTRELOIGNE, J., AND VANFLETEREN, J. 3D orientation tracking based on unscented kalman filtering of accelerometer and magnetometer data. In Sensors Applications Symposium, 2009. SAS 2009. IEEE (February 2009), pp. 148–152.
[12] KLEPPNER, D., AND KOLENKOW, R. J. An Introduction to Mechanics. Cambridge University Press, 2010.
[13] PADGAONKAR, A., KRIEGER, K., AND KING, A. Measurement of angular acceleration of a rigid body using linear accelerometers. Journal of Applied Mechanics, Transactions of the American Society of Mechanical Engineers 42 (September 1975), 552–556.
[14] PARK, C., AND CHOU, P. H. Eco: Ultra-wearable and expandable wireless sensor platform. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (2006), pp. 162–165.
[15] PARK, S., TAN, C.-W., AND PARK, J. A scheme for improving the performance of a
gyroscope-free inertial measurement unit. Sensors and Actuators A-Physical 121, 2 (March 2005), 410–420.
[16] PARSA, K., ANGELES, J., AND MISRA, A. K. Rigid-body pose and twist estimation using an accelerometer array. Archive of Applied Mechanics 74 (December 2004), 223–236.
[17] PENG, Y. K., AND GOLNARAGHI, M. A vector-based gyro-free inertial navigation system by integrating existing accelerometer network in a passenger vehicle. In Position Location and Navigation Symposium, 2004. PLANS 2004 (April 2004), pp. 234–242.
[18] SCHOPP, P., KLINGBEIL, L., CHRISTIAN, P., AND MANOLI, Y. Design, geometry evaluation, and calibration of a gyroscope-free inertial measurement unit. Sensors and Actuators A: Physical 162, 2 (2010), 379 – 387.
[19] TAN, C.-W., PARK, S., MOSTOV, K., AND VARAIYA, P. Design of gyroscope-free navigation systems. In IEEE Intelligent Transportation Systems Conference Proceedings (Oakland, CA, August 2001).
[20] TSAI, Y.-L. EcoTrack: A gesture recognition and motion tracking system based on EcoIMU. Master’s thesis, National Tsing Hua University, June 2010.
[21] TSAI, Y.-L., TU, T.-T., BAE, H., AND CHOU, P. H. EcoIMU: A dual triaxial-accelerometer inertial measurement unit for wearable applications. In International Conference on Body Sensor Networks (June 2010), pp. 207–212.
[22] TSAI, Y.-L., TU, T.-T., BAE, H., AND CHOU, P. H. EcoIMU: A compact, wireless, gyro-free inertial measurement unit based on two triaxial accelerometers. In Information Processing in Sensor Networks (IPSN), 2011 10th International Conference on (April 2011), pp. 133–134.
[23] UDAYA SHANKAR, P. S., RAVEENDRANATHAN, N., GANS, N. R., AND JAFARI, R. Towards power optimized kalman filter for gait assessment using wearable sensors. In Wireless Health 2010 (October 2010), pp. 137–144.
[24] WARD, J. A., LUKOWICZ, P., AND TRÖSTER, G. Gesture spotting using wrist worn microphone and 3-axis accelerometer. In Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-aware Services: Usages and Technologies (2005), sOc-EUSAI ’05, pp. 99–104.
[25] WELCH, G., AND FOXLIN, E. Motion tracking: No silver bullet, but a respectable arsenal. IEEE Computer Graphics and Applications 22, 6 (November–December 2002), 24–38.
[26] WU, J., JIANG, C., LIU, Z., HOUSTON, D., JAIMES, G., AND MCCONELL, R. Comparison of multiple portable gps units for use in epidemiological studies. Epidemiology 22, 1 (2011), S195.
[27] XIAOPING, Y., BACHMANN, E., AND MCGHEE, R. A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements. Instrumentation and Measurement, IEEE Transactions on 57, 3 (March 2008), 638–650.
[28] YOU, S., NEUMANN, U., AND AZUMA, R. Hybrid inertial and vision tracking for augmented reality registration. In IEEE Virtual Reality 1999 (MARCH 1999), pp. 260–267.
[29] ZHOU, H., AND HU, H. Human motion tracking for rehabilitation – a survey, 2008.