研究生: |
賴奐如 |
---|---|
論文名稱: |
膠原蛋白-透明質酸複合電紡奈米纖維包覆多種可階段性釋放之血管生長因子應用於慢性傷口修復 Electrospun Collagen-Hyaluronic Acid Composite Nanofibers with Programmable Release of Multiple Angiogenic Growth Factors for Chronic Wound Healing |
指導教授: | 王子威 |
口試委員: |
洪士杰
林頌然 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 靜電紡織 、天然高分子 、奈米顆粒 、血管生長因子 、傷口修復 |
外文關鍵詞: | electrospinning, natural polymer, nanoparticle, multiple angiogenic growth factors, would healing |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對慢性傷口(例: 糖尿病傷口、壓瘡、褥瘡等)而言,其中一個重要的課題便是血管再生。當血液無法運輸養份到末端的傷口,除了傷口復原可能延緩之外,還有可能使患部惡化,組織壞死導致截肢。由於血管新生過程需要多種的蛋白質、生長因子,以及酵素的配合,因此如何適時並持續補充生長因子是加速慢性傷口癒合的重要關鍵。截至目前為止,商業化販售的創傷敷料與人工皮膚產品,鮮少添加促進血管生長因子,只有一項由Johnson & Johnson開發的產品becaplermin (Regranex) 具有此功能,然而該產品只含一種因子。有鑑於此,本研究欲開發同時包覆多種血管生長因子的天然高分子奈米纖維人工皮膚敷料。所製備的基材具有透明質酸與膠原蛋白交錯之奈米纖維結構,構造上與細胞外間質有極高相似度,且奈米孔洞的結構能幫助傷口滲出液排除以及氣體運輸;除此之外,有利於細胞遷移到基材內部,讓血管新生以及組織的再生更加容易。再者,奈米纖維內所包覆的多種生長因子,藉由不同的載體包覆,能夠長時間緩慢並且階段性地釋放,幫助傷口修復。當透明質酸或膠原蛋白奈米纖維降解後,能幫助細胞增生及皮膚再生,所釋放出來多種血管生長因子,與細胞作用後可促使血管新生、穩定並成熟,對於表皮以及真皮也有加速修復的效果。
本研究包含四大部分:第一部分為利用靜電紡織技術製備出奈米複合纖維,找出電紡參數的最佳條件,並將多種血管新生因子分別包覆在奈米纖維與明膠奈米顆粒中,找出最佳載藥條件; 第二部份為支架物化性分析,利用場發射電子顯微鏡及共軛焦顯微鏡觀察奈米纖維之結構與所包覆奈米顆粒的大小,用微拉伸試驗機檢測基材的機械性質,以及測定生長因子的釋放曲線與活性;第三部分在體外建立細胞培養模型,檢驗基材的生物相容性、與生長因子在促進細胞生長速率與生成環狀血管構造的差異;第四部分利用糖尿病老鼠當作實驗對象,觀察所製備的添加多種血管新生因子天然奈米複合纖維人工皮膚是否能進一步促進慢性傷口修復及血管新生。
1. Geoffrey C. Gurtner, S.W., Yann Barrandon & Michael T. Longaker, Wound repair and regeneration. NATURE, 2008. 453(15).
2. Sabine A. Eming, T.K.a.J.M.D., Inflammation in Wound Repair: Molecular and Cellular Mechanisms. Journal of Investigative Dermatology, 2007. 127.
3. Dulmovits, B.M. and I.M. Herman, Microvascular remodeling and wound healing: A role for pericytes. The International Journal of Biochemistry & Cell Biology, 2012. 44(11): p. 1800-1812.
4. Dorne R. Yager, R.A.K., and Laura A. Gilman, Wound Fluids: A Window Into the Wound Environment. Lower extremity wounds, 2007. 6(4).
5. Caroline E. Fife, M.J.C., David Walker, Brett Thomson Wound Care Outcomes and Associated Cost Among Patients Treatd in US Outpatient Wound Centers: Data From the US Wound Registry. WOUNDS, 2012. 24(1): p. 10-17.
6. Worldwide Surgical Sealants, Glues, Wound Closure and Anti-Adhesion Markets, 2010-2017, 2012, MedMarket Diligence.
7. Sedelnik, L., Using advanced therapies to treat non-healing chronic wounds, in Wound healing perspectives2008, National Healing Corporation.
8. Tatiana N. Demidova-Rice, J.T.D., and Ira M. Herman, Wound Healing Angiogenesis Innovations and Challenges in Acute and Chronic Wound Healing. Advances in Wound Care, 2012. 1(1).
9. Kannan RY, S.H., Sales K, Butler P, Seifalian AM., The roles of tissue engineering and vascularization in the development of micro-vascular networks: a review. Biomaterials, 2005. 26: p. 1857-1875.
10. Patan, S., Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology, 2000. 50: p. 1-15.
11. Michiels, C., T. Arnould, and J. Remacle, Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2000. 1497(1): p. 1-10.
12. Malgorzata Milkiewica, E.I., Jennifer L. Doyle, Tara L. Haas, Regulator of angiogenesis and strategies for their therapeutic manipulation. The International Journal of Biochemistry & Cell Biology, 2006. 38: p. 333-357.
13. Gutkind, J.G.J.S., VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biology, 2006. 8: p. 1223-1234.
14. Timthy Browder, J.F.a.S.P.-S., The hemostatic system as a regulator of angiogenesis. The journal of biological chemistry, 2000. 275: p. 1521-1524.
15. Gerhardt H, G.M., Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C., VEGF guides angiogenic sprouting utilizaing endothelial tip cell filopodia. Journal of Cell Biology, 2003. 161: p. 1163-1177.
16. Hellstrom M, P.L., Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C., Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007. 445: p. 776-780.
17. Hellmut G. Augustin, G.Y.K., Gavin Thurston and Kari Alitalo, Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 2009. 10: p. 165-177.
18. Konstantin Gaengel, G.G., Annika Armulik, Christer Betsholtz, Endothelial-Mural Cell Signaling in Vascular Development and Angiogenesis. Arterioscler Thromb Vasc biol, 2009. 29: p. 630-638.
19. Ahmad Raza, M.J.F., and Arkadiusz Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis. American Journal of Hematology, 2010. 85: p. 593-598.
20. Quaegebeur, A., C. Lange, and P. Carmeliet, The Neurovascular Link in Health and Disease: Molecular Mechanisms and Therapeutic Implications. Neuron, 2011. 71(3): p. 406-424.
21. Mooney, C.F.a.D.J., Polymeric Systems for Bioinspired Delivery of Angiogenic Molecules. Advanced Polymer Science 2006. 203: p. 191-221.
22. Philip Bao, A.K., Marjana Tomic-Canic, Michael S. Golinko, H. Paul Ehrlich and Harold Brem, The Role of Vascular Endothelial Growth Factor in Wound Healing. Journal of Surgical Research, 2009. 153: p. 347-358.
23. Murohara T, H.J., Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM., Vascular endothelial growth factor/vascular permability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation, 1998. 97: p. 99-107
24. S. P. Bennett, G.D.G., A. M. Schor, G. P. Leese and S. L. Schor, Growth factors in the treatment of diabetic foot ulcers. British Journal of Surgery, 2003. 90: p. 133-146.
25. Kibe Y, T.H., Kishimoto S., Spatial and temporal expression of basic fibroblast growth factor protein during wound healing of rat skin. British Journal of Dermatology, 2000. 143: p. 720-727.
26. Quirinia A, V.A., The effect of recombinant basic fibroblast growth factor (bFGF) in fibrin adhesive vehicle on the healing of ischaemic and normal incisional skin wounds. Scandinavian Journal of Plastic Reconstrutive Surgery and Hand Surgery, 1998. 32(1): p. 9-18.
27. Okumura M, O.T., Nakamura T, Yajima M, Acceleration of wound healing in diabetic mice by basic fibroblast growth factor. Biological and Pharmaceutical Bulletin, 1996. 19(4): p. 530-535.
28. Shevchenko, R.V., S.L. James, and S.E. James, A review of tissue-engineered skin bioconstructs available for skin reconstruction. Journal of the Royal Society Interface, 2010. 7(43): p. 229-258.
29. Harding, K.G., H.L. Morris, and G.K. Patel, Healing chronic wounds. BMJ, 2002. 324(7330): p. 160-163.
30. DL, S., Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. . Journal of Vascular Surgery, 1995. 21(1): p. 71-78.
31. Wieman TJ, S.J., Su Y., Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (Beclapermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomised placebo-controlled double-blind study. . Diabetes Care, 1998. 21(5): p. 822-827.
32. Sandra Liekens, E.D.C., Johan Neyts, Angiogenesis: regulators and clinical applications. Biochemical Pharmacology, 2001. 61: p. 253-270.
33. Ferrari, G., et al., Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. Journal of Cellular Physiology, 2009. 219(2): p. 449-458.
34. JOSHUA S. BOATENG, K.H.M., HOWARD N.E. STEVENS, GILLIAN M. ECCLESTON, Wound Healing Dressings and Drug Delivery Systems: A Review. JOUrnal of pharmaceutical sciences, 2007. 97(8).
35. Sadelnik, L., Using advanced therapies to treat non-healing chronic wounds. wound healing perspectives, 2008. 5(1).
36. Yeager DA, O.J., Investigation of GraftJacket regenerative tissue matrix-ulcer repair on full-thickness lower extrmity ulcers. , W.M.T. Inc., Editor 2005.
37. B. Allenet, F.P., T. Lebrun, L. Carr, J. Posnett, J. Martini, C. Yvon Cost-Effectiveness Modeling of Dermagraft for the Treatment of Diabetic Foot Ulcers. Diabetes & Metabolism, 2000. 26: p. 125-132.
38. Atiyeh, B.S. and M. Costagliola, Cultured epithelial autograft (CEA) in burn treatment: Three decades later. Burns, 2007. 33(4): p. 405-413.
39. Clinical Experience with Oasis Wound Matrix for the Treatment of Venous and Diabetic Ulcers: A Series of Four Cases, in Healthpoint2006, HMP COMMUNICATIONS.
40. Rho, K.S., et al., Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006. 27(8): p. 1452-1461.
41. Leipziger, L.S., et al., Dermal wound repair: Role of collagen matrix implants and synthetic polymer dressings. Journal of the American Academy of Dermatology, 1985. 12(2, Part 2): p. 409-419.
42. Rnjak-Kovacina, J., et al., Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomaterialia, 2012. 8(10): p. 3714-3722.
43. Christian Frantz, K.M.S.a.V.M.W., The extracellular matrix at a glance. Journal of Cell Science, 2010. 123.
44. Jeffrey Voigt, M., MPH; Vickie R. Driver, DPM, MS, Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: A systematic review and meta-analysis of randomized controlled trials. Wound Repair and Regeneration, 2012. 20: p. 317-331.
45. Weigel, P.H., G.M. Fuller, and R.D. LeBoeuf, A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. Journal of Theoretical Biology, 1986. 119(2): p. 219-234.
46. W. Y. JOHN CHEN, G.A., Functions of hyaluronan in wound repair. Wound Repair and Regeneration, 2002. 7(2): p. 79-89.
47. Min Hu, E.E.S., Yang Cao, James Chang, Vincent R. Hentz, Three-Dimensional Hyaluronic Acid Grafts Promote Healing and Reduce Scar Formation in Skin Incision Wounds, in Journal of Biomedical Materials Research Part B-Applied Biomaterials2003. p. 586-592.
48. Longaker MT, C.E., Adzick NS, Stern M, Harrison MR, Stern R, Studies in fetal wound healing. 5. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Annals of surgery, 1991. 213: p. 292-296.
49. Uppal, R., et al., Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2011. 97B(1): p. 20-29.
50. Sahoo, S., et al., Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. Journal of Biomedical Materials Research Part A, 2010. 93A(4): p. 1539-1550.
51. M.W. Laschke, M.D.M., Vascularization in Tissue Engineering: Angiogenesis versus inosculation. European Surgical Research. 2012. 48: p. 85-92.
52. Ionescu, L.C., et al., An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials, 2010. 31(14): p. 4113-4120.
53. Sundararaghavan, H.G., R.B. Metter, and J.A. Burdick, Electrospun Fibrous Scaffolds with Multiscale and Photopatterned Porosity. Macromolecular Bioscience, 2010. 10(3): p. 265-270.
54. Jelena Rnjak-Kovacina, S.G.W., Zhe Li, Peter K.M. Maitz, Cara J. Young, Yiwei Wang, Anthony S. Weiss, Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 2011. 32: p. 6279-6736.
55. Sundararaghavan, H.G. and J.A. Burdick, Gradients with Depth in Electrospun Fibrous Scaffolds for Directed Cell Behavior. Biomacromolecules, 2011. 12(6): p. 2344-2350.
56. Guo, X.L., et al., Creating 3D Angiogenic Growth Factor Gradients in Fibrous Constructs to Guide Fast Angiogenesis. Biomacromolecules, 2012. 13(10): p. 3262-3271.
57. Baker, B.M., et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 2008. 29(15): p. 2348-2358.
58. Blakeney, B.A., et al., Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials, 2011. 32(6): p. 1583-1590.
59. Davis, D.R.S.a.G.E., Angiogenesis. Cold Spring Harbor Perspectives in Biology, 2011. 3(8): p. 1-19.
60. Tamar Kaully, K.K.-F., Ayelet Lesman and Shulamit Levenberg, Vascularization-The Conduit to Viable Engineered Tissues. TISSUE ENGINEERING: Part B, 2009. 15: p. 159-169.
61. Callegari, A., et al., Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials, 2007. 28(36): p. 5449-5461.
62. Perng, C.-K., et al., In Vivo Angiogenesis Effect of Porous Collagen Scaffold with Hyaluronic Acid Oligosaccharides. Journal of Surgical Research, 2011. 168(1): p. 9-15.
63. Klumpp, D., et al., Three-dimensional vascularization of electrospun PCL/collagen-blend nanofibrous scaffolds in vivo. Journal of Biomedical Materials Research Part A, 2012. 100A(9): p. 2302-2311.
64. Xiaoming Zhou, R.G.R., Nobuaki Hiraoka, Jerry P. George, Denis Wirtz, Deane F. Mosher, Ismo Virtanen, Michael A. Chernousov and Stephen J. Weiss, Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes & Development, 2008. 22: p. 1231-1243.
65. A Tuin, J.Z., SG Kluijtmans, Jb Bouwstra, MC Harmsen and MJA Van Luyn, HYALURONIC ACID-RECOMBINANT GELATIN GELS AS A SCAFFOLD FOR SOFT TISSUE REGENERATION. European Cells and Materials, 2012. 24: p. 320-330.
66. Tian, L.L., et al., Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-epsilon-caprolactone) nanofibers for sustained release in cardiac tissue engineering. Journal of Materials Science, 2012. 47(7): p. 3272-3281.
67. Suzan T.M. Nillesen, P.J.G., Ronnie Wismans, Joost Schalkwijk, Willeke F. Daamen, and Toin H. van Kuppevelt, Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials, 2007. 28: p. 1123-1131.
68. Yang, Y., et al., Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials, 2011. 32(18): p. 4243-4254.
69. Jin, Q., et al., Nanofibrous Scaffolds Incorporating PDGF-BB Microspheres Induce Chemokine Expression and Tissue Neogenesis <italic>In Vivo</italic>. PLoS ONE, 2008. 3(3): p. e1729.
70. Andrejecsk, J.W., et al. Cellular delivery for vascularization of engineered tissues: Reduction of contraction by mural cells. in Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast. 2011.
71. Yoojin Shin, S.H., Jessie S Jeon, Kyoko Yamamoto, Ioannis K Zervantonakis, Ryo Sudo, Roger D Kamm and Seok Chung, Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nature Protocols, 2012. 7: p. 1247-1259.
72. Michael Lovett, K.L., Aurelie Edwards, and David L. Kaplan, Vascularization Strategies for Tissue Engineering. TIssue Engineering: Part B, 2009. 15: p. 353-370.
73. Royce, P.M., et al., The enhancement of cellular infiltration and vascularisation of a collagenous dermal implant in the rat by platelet-derived growth factor BB. Journal of Dermatological Science, 1995. 10(1): p. 42-52.
74. Bauer, S.M., et al., Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. Journal of Vascular Surgery, 2005. 41(4): p. 699-707.
75. Richardson T.P., P.M.C., Ennett A.B. and Mooney D.J., Polymeric System for dual growth factor delivery. Nature Biotechnology, 2001. 19: p. 1029-1034.
76. Xiaojin Hao, E.A.S., Agneta Månsson-Broberg, Karl-Henrik Grinnemo, Anwar J. Siddiqui, Göran Dellgren, Eva Wärdell, Lars Åke Brodin, David J. Mooney, Christer Sylvén, Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 2007. 75: p. 178-185.
77. SY Chew, Y.W., Y Dzenis, and KW Leong, The Role of Electrospinning in the Emerging Field of Nanomedicine. Curr Pharm Des., 2006. 12(36): p. 4751-4770.
78. Rutledge G C, S.M.Y., Warner S B, Buer A, Grimler M and Ugbolue SC, A Fundamental Investigation of the Formation and Properties of Electrospun Fibers, 2000, National Textile Center Annual Report.
79. Nandana Bhardwaj, S.C.K., Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 2010. 28: p. 325-347.
80. Wang, S., et al., Fabrication and morphology control of electrospun poly(γ-glutamic acid) nanofibers for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2012. 89(0): p. 254-264.
81. Kumbar, S.G., et al., Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials, 2008. 29(30): p. 4100-4107.
82. Fong, H., I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592.
83. Uyar, T. and F. Besenbacher, Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer, 2008. 49(24): p. 5336-5343.
84. Van der Schueren, L., et al., An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 2011. 47(6): p. 1256-1263.
85. Ju Young Park, S.W.H., and In Hwa Lee, Preparation of Electrospun Porous Ethyl Cellulose Fiber by THF/DMAc Binary Solvent System. Journal of Industrial and Engineering Chemisty, 2007. 13: p. 1002-1008.
86. Lu, Y., et al., Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning. Acta Biomaterialia, 2009. 5(5): p. 1562-1574.
87. Nie, H., et al., Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnology and Bioengineering, 2008. 99(1): p. 223-234.
88. Michel R, P.S., Textor M, Castner DG. , Influence of PEG architecture on protein adsorption and conformation. Langmuir, 2005. 21(26): p. 12327-12332.
89. Wei Ji, Y.S., Fang Yang, Jeroen J.J.P. van den Beuchen, Mingwen Fan, Zhi Chen, John A. Jansen, Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue ENgineering Applications. Pharmacological Research, 2011. 28: p. 1259-1272.
90. Yan Su, Q.S., Wei Liu, Marcus Lim, Jayarama Reddy Venugopal, Xiumei Mo, Seeram Ramakrishna, Salem S. Al-Deyab, Mohamed El-Newehy, Controlled release of bone morphogenetic protein 2 and dexamethasone loaded
in core–shell PLLACL–collagen fibers for use in bone tissue engineering. Acta Biomaterialia, 2012. 8: p. 763-771.
91. Tatsuya Okuda, K.T., Satoru Kidoaki, Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. Journal of Controlled Release, 2010. 143: p. 258-264.
92. Botao Song, C.W., Jiang Chang, Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomaterialia, 2012. 8: p. 1901-1907.
93. Ji Suk Choi, S.H.C.a.H.S.Y., Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors. Journal of Materials Chemistry, 2011. 21: p. 5258-5267.
94. Diane Bou¨ıs, Y.K., Coby Meijer, Nanno H. Mulder, Geke A.P. Hospers, A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacological Research, 2006. 53: p. 89-103.
95. Jeroen Rouwkema, N.C.R.a.C.A.v.B., Vascularization in tissue engineering. Trends in Biotechnology, 2008. 26: p. 434-441.
96. Gurtner, V.W.W.a.G.C., Tissue engineering for the management of chronic wounds: current concepts and future perspectives. Experimental Dermatology, 2012. 21: p. 729-734.
97. Ono, I., T. Tateshita, and M. Inoue, Effects of a collagen matrix containing basic fibroblast growth factor on wound contraction. Journal of Biomedical Materials Research, 1999. 48(5): p. 621-630.
98. Ilaria Tocco, B.Z., Franco Bassetto, and Vincenza Vindigni, Nanotechnology-Based Therapies for Skin Wound Regeneration. Journal of Nanomaterials. 2012: p. 11.
99. Tettamanti G., G.A., Rinaldi L., Arnaboldi F., Congiu T., Valvassori R. and Eguileor M., The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biology Cell, 2004. 96(6): p. 443-455.
100. Barkefors, I., et al., Endothelial Cell Migration in Stable Gradients of Vascular Endothelial Growth Factor A and Fibroblast Growth Factor 2: EFFECTS ON CHEMOTAXIS AND CHEMOKINESIS. Journal of Biological Chemistry, 2008. 283(20): p. 13905-13912.
101. Makino, T., et al., Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. British Journal of Dermatology, 2010. 162(4): p. 717-723.
102. Wei Li, J.F., Mei Chen, Shenxi Guan, David Sawcer, Gary M. Bokoch, and David T. Woodley, Mechanism of Human Dermal Fibroblast Migration Driven by Type I Collagen and Platelet-derived Growth Factor-BB. Molecular Biology of the Cell, 2004. 15: p. 294-309.
103. John N. Clore, I.K.C.a.R.F.D., Quantitation of Collagen Types I and III during Wound Healing in Rat Skin. Experimental Biology and Medicine, 1979. 161: p. 337-340.
104. Suryanarayana, V.P.a.M., Biochemical and dynamic studies of collagen from human normal skin and keloid tissue. Indian Journal of Biochemistry & Biophysics, 1999. 36: p. 158-164.
105. Mats Hellström, M.K., Per Lindahl, Alexandra Abramsson and Christer Betsholtz, Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 1999. 126: p. 3047-3055.