簡易檢索 / 詳目顯示

研究生: 曾奕傑
Tseng, Yi-Chieh
論文名稱: 模型式光聲斷層掃描影像重建
Model Based Image Reconstruction for Photoacoustic Tomography
指導教授: 李夢麟
Li, Meng-Lin
口試委員: 劉浩澧
黃執中
沈哲州
李夢麟
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 48
中文關鍵詞: 光聲斷層掃描空間脈衝響應模型式光聲影像重建逆投影演算法
外文關鍵詞: photoacoustic tomography, spatial impulse response, model-based image reconstruction, back-projection algorithm
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    傳統基於逆投影演算法光聲斷層掃描影像重建會受到有限孔徑效應影響。有限孔徑效應來自於探頭孔徑大小造成的空間脈衝響應,導致切向解析度變差。在傳統上的解決方法是使用聚焦式探頭,利用探頭聚焦點作為虛擬點探頭來降低有限孔徑效應對影像的影響。在本研究中我們提出模型式光聲斷層掃描影像重建法,針對光聲斷層掃描成像系統建立數學模型,基於還原觀測區域的光吸收分佈推導出最佳的濾波器,消除有限孔徑造成的空間脈衝響應。在模擬與實驗驗證上我們比較了模型式光聲影像重建法(model-based image reconstruction)與逆投影演算法(back-projection algorithm)。模擬結果顯示不管使用聚焦式探頭或是非聚焦式探頭兩種方法的徑向解析度皆為最佳。切向解析度則是模型式光聲影像重建法可維持均勻的解析度,但是逆投影演算法離掃描圓心越遠解析度越差。此外,仿體實驗結果亦與模擬結果相匹配。因為使用模型式光聲影像重建法需要使用到大量記憶體,所以實際運用上包含許多限制導致實用性不佳,為了配合處理實際實驗數據,我們提出化簡模型式光聲影像重建法中矩陣運算複雜度的方法,可以根據實驗數據做彈性調整和加大重建影像的觀察區域。未來我們希望更進一步模型式光聲影像重建法,達到減少計算複雜度和運算時間,增加此演算法的實用性。


    Abstract
    Image reconstruction for photoacoustic tomography is affected by the finite aperture effect. The finite-aperture effect is caused by spatial impulse response associated with finite-sized acoustic transducer, resulting in the worse tangential resolution when imaging points are close to the transducer position. In this study, we developed a model-based image reconstruction technique for photoacoustic tomography to solve such a problem. Based on a linear, discrete PAT imaging model, the proposed method employs a spatiotemporal optimal filter designed in minimum mean square error sense to compensate the SIRs associated with an unfocused and focused transducer at every imaging point; thus retrospective restoration of the tangential resolution can be achieved. Simulation and experimental results demonstrate that this method can substantially improve the degraded tangential resolution for PAT with finite-sized unfocused transducers while retaining the radial resolution. In actually, doing model-based image reconstruction contains many limitations leading to low efficiency, because it requires a lot amount of memories. For cooperating to deal with experimental data, we propose a method to simplify complexity of the algorithm of model-based image reconstruction. It would be adjusted from the condition of experiment and increases the range of observation. In future, We hope to further improve model-based image reconstruction to reduce the computational complexity. It increases the algorithm's usefulness.

    目錄 摘要 I Abstract II 致謝 III 表目錄 X 第一章 緒論 1 1.1 光聲斷層掃描簡介 1 1.2 逆投影演算法 2 1.3 有限孔徑效應 4 1.4 虛擬點探頭 7 1.5 研究動機與目的 9 1.6 論文架構 10 2.1 光聲斷層掃描造影模型建立 11 2.2 最佳化濾波器 16 2.3 演算法之簡化 19 第三章 模擬與實驗 23 3.1 模擬方法 23 3.2 模擬結果與討論 25 3.3 實驗系統架構設計 30 3.4 仿體實驗討論與討論 33 第四章 結論與未來工作 38 4.1 結論 38 4.2 未來工作 39 附錄A 討論掃描線數目對影像重建的影響 42 附錄B 以球狀物為觀測物做光聲斷層掃描 44 參考文獻 45

    1 X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).

    2 L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).

    3 M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).

    4 J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).

    5 S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).

    6 M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).

    7 G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

    8 Y. Xu, D. Feng, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography—I: Planar geometry," IEEE Transactions on Medical Imaging 21 (7), 823–828 (July 2002).

    9 Y. Xu, M. Xu, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography—II: Cylindrical geometry," IEEE Transactions on Medical Imaging 21 (7), 829–833 (July 2002).

    10 C. H. Frazier and W. D. O’Brien, Jr., ‘‘Synthetic aperture techniques with a virtual source element,’’ IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 196–207 (1998).

    11 M. Lorenz, ‘‘Ultrasonic imaging for the characterization of defects in steel components,’’ Ph.D. thesis, Delft University of Technology, 1993.

    12 R. Hannemann, ‘‘Modeling and imaging of elastodynamic wave fields in homogeneous anisotropic media,’’ Ph.D. thesis, Kassel University, 2001.

    13 S. Nikolov, ‘‘Synthetic aperture tissue and flow ultrasonic imaging,’’ Ph.D. thesis, Technical University of Denmark, 1993.

    14 F. Lingvall, “Time domain reconstruction methods for ultrasonic array imaging,” Ph.D. dissertation, Signals and Systems, Uppsala University, Uppsala, Sweden (2004).

    15 M. Xu, and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003).

    16 M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).

    17 M.-L. Li, and L. V. Wang, “A study of reconstruction in photoacoustic tomography with a focused transducer,” Proc. SPIE 6437, 64371E (2007).

    18 P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49(5B), 1629–1638 (1971).

    19 B. Piwakowski, and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989).

    20 F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003).

    21 E. Wennerstrom and T. Stepinski, “Model-based correction of diffraction effects of the virtual source element,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 8, pp. 1614–1622, Aug. 2007.

    22 S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation Theory Vol. I (Prentice–Hall, Englewood Cliffs, NJ, 1993)

    23 S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation Theory Vol. II (Prentice–Hall, Englewood Cliffs, NJ, 1998)

    24 M. Tanter, J.-L. Thomas, and M. Fink, ‘‘Time reversal and the inverse filter,’’ J. Acoust. Soc. Am. 108, 223–234 (2000).

    25 A. Papoulis, Probability, Random Variables and Stochastic Processes, 2nd ed. (McGraw–Hill, New York, 1984).

    26 G. L. Turin, ‘‘An introduction to matched filters,’’ IRE Trans. Inf. Theory 6, 311–329 (1960).

    27 http://www.signal.uu.se/Toolbox/dream/

    28 G. Ku, X. Wang, G. Stoica, and L. V. Wang, "Multiple-bandwidth photoacoustic tomography," Physics in Medicine and Biology 49 (7), 1329–1338 (Mar. 2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE