簡易檢索 / 詳目顯示

研究生: 王逸群
Yi-Chun Wang
論文名稱: 短束團熱陰極高頻電子槍技術探討
A Thermionic RF-gun for Short Bunch Generation
指導教授: 黃衍介
Yen-Chieh Huang
劉偉強
Wai-Keung Lau
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 高頻電子槍束團壓縮超短電子束團
外文關鍵詞: RF-gun, Bunch compression, Ultra-short electron bunches
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱陰極高頻電子槍是利用建立高功率微波在共振腔內之高梯度電場克服空間電荷力(Space charge)的影響,加速置於腔體內熱陰極所發射之電子以產生高亮度之電子束。若配合阿爾發-磁鐵 (Alpha-magnet)之使用,可以將電子束團長度壓縮至數十微米範圍內。以電腦程式(PARMELA)模擬電子在共振腔內的加速過程及在束團壓縮機制的射束動力學發現藉由優化電子槍腔體內之電磁場分佈,可使輸出電子束能量隨時間成線性分佈(Linear energy chirp)。再經過具有適當磁場梯度之阿爾發-磁鐵後,束團長度可以壓縮至三十微米以下(100飛秒)。本研究就是以研製2.856 GHz熱陰極高頻電子槍共振腔體為主題,並探討以該系統產生短束團電子束之物理機制。

    實驗方面,電子槍的製作已在「國家同步輻射研究中心」高頻小組協助下完成。我們針對該共振腔進行冷測,證實其微波特性與電腦模擬結果相符,全腔室與半腔室內的電場強度比例已調校成二比一,該比例為產生短束團之理想值。我們並利用微擾方法測量驗證調校後沿著腔體中心軸縱向電場強度之分佈。此外,陰極燈絲測試、陰極活化、以及高功率微波測試等工作均已完成。

    目前該實驗站正由國家同步輻射研究中心輻射安全防護小組進行輻射屏敝與防護工程、同時我們也正針對飛秒級電子束團之射束診斷及量測方法進行評估,預計在不久的將來即能進行電子束特性之量測。


    In a thermionic RF-gun, electrons emitted from its cathode are accelerated by the high gradient accelerating field in the microwave cavity. Since the effect of space-charge force has been compensated by the high electric field on cathode surface, low emittance electron beam can be obtained. On the other hand, a beam with linear energy chirped bunches can be generated by optimizing the electric field ratio between full-cell and half-cell of the RF-gun cavity. With the alpha-magnet as bunch compressor, these linear energy chirped bunches can be compressed into bunches with very short lengths. Simulation results showed that a beam with bunch lengths at around 30 micrometers can be obtained from this scheme.

    The RF-gun has been fabricated at National Synchrotron Radiation Research Center (NSRRC). Characterization of the cavity has been performed and measurement results are found to be in good agreement with those obtained from simulation. Electric field ratio between full-cell and half-cell has been optimized. Longitudinal electric field along the cavity axis is verified with bead-pull method. Cathode heater test, activation and testing of high power microwave system were completed for beam tests.

    Chapter 1: Introduction 1.1 Ultra-short bunches and novel light source 2 1.2 Schemes of ultra-short beam generation 3 1.3 Thermionic RF-gun 6 Chapter 2: Electron dynamics 2.1 Introduction 8 2.1.1 Bunching Effect 9 2.1.2 Cavity parameters 11 2.2 Simulation codes and methodology 13 2.2.1 SUPERFISH 13 2.2.2 PARMELA 15 2.3 Simulation results 16 2.3.1 Beam dynamics in RF-gun cavity 17 2.3.2 Bunch compression with alpha-magnet 18 Chapter 3 Construction of thermionic RF-gun 3.1 Fabrication of RF-gun cavity 23 3.2 Characterization of RF-gun 26 3.2.1 Bead-pull measurement 26 3.2.2 Resonant frequency measurement 29 3.2.3 Coupling coefficient and Q measurement 30 3.3 Cathode activation 31 3.4 Characterization of high power microwave system 34 Chapter 4 Conclusion 4.1 Conclusion 42 4.2 Direction for future studies 43 Appendix Appendix A SUPERFISH input files 44 Appendix B PARMELA input file 46 Appendix C Alpha-magnet filed mapping 47 Reference 50

    [1] B. J. Siwick, et al., “An Atomic-Level View of Melting Using Femtosecond Electron Diffraction”, Science, 302, 1382-1385, 2003.
    [2] Avi Gover, “Superradiant and stimulated-superradiant emission in prebunched electron-beam radiators. Ⅰ. Formulation’’, Phys. Rev. ST Accel. Beams 8, 030701, 2005.
    [3] A. Gover et al., “Superradiant and stimulated-superradiant emission in prebunched electron-beam radiators. Ⅱ. Radiaiton enhancement schemes’’ Phys. Rev. ST Accel. Beams 8, 030702, 2005.
    [4] Mitsuru Uesaka, “Femtosecond Beam Science”, Imperial College Press, 2005.
    [5] S. Rimjaem, R. Farias, C. Thongbai, T. Vilaithong, H. Wiedemann, “Femtosecond electron bunches from an RF-gun”, Nucl. Instr. and Meth. A 533, 258-269, 2004.
    [6] S.Y. Lee, “Accelerator Physics”, World Scientific Publishing, 2004.
    [7] M. Reiser, “Principles of Charged Particle Acceleration”, John Wiley, 1986.
    [8] J. H. Billen and L. M. Young, “POISSON SUPERFISH,” Los Alamos National
    Laboratory report LA-UR-96-1834, 2003
    [9] L. M. Young, “PARMELA,” Los Alamos National Laboratory report, 2004.
    [10] H. Y. Chen, “Investigation of Space Charge Beam Dynamics in a Photocathode Superconducting RF Gun”, Master thesis, National Tsing-Hua University, 2005.
    [11] Michael Borland, “A High-brightness Thermionic Microwave Electron Gun”,
    PhD thesis, Stanford University, SLAC-R-0402, 1991.
    [12] Y. C. Wang, S. Rimjaem, S.Y. Hsu, J.Y. Hwang, W.K. Lau, F.Y. Lin, T.T. Yang,
    “Generation of Ultra-Short Electron Bunches for Light Source Research”,
    submitted to International Journal of Modern Physics B, April 2006.
    [13] 「BCompress」 is a simulation code for bunch compression calculation, provided by Prof. Helmut Wiedemann, Stanford University
    [14] W.K. Lau, B.J. Chan, L.H. Chang. C.W. Chen, H.Y. Chen, S.Y. Hsu, K.T. Hsu,
    J.Y. Hwang, K.K. Lin, Y.C. Wang, T.T. Yang,, “Characterization and Tuning of
    a Microwave Gun Cavity”, IEEE PAC, 2005.
    [15] 楊滋德、杜金城、朱國瑞, 單陽極磁控電子鎗研究-製造及測試, 科學發展月刊第十八卷第六期, 中華民國七十九年六月

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE