簡易檢索 / 詳目顯示

研究生: 林松香
Lin, Song-Shiang
論文名稱: 壓克力系感光材料合成及其在平面顯示器之應用研究
Synthesis of Acrylated Base Photosensitive Material for the Applications of Flat Panel Display
指導教授: 李育德 教授
Lee, Yu-Der
口試委員: 劉大佼
Liu, T.J.
蔡宏斌
詹立行
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 182
中文關鍵詞: 感光材料奈米孔洞光配向電漿配向
外文關鍵詞: photosensitive, nanoporous, photo aligment, plasma alignment
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分 壓克力系低介電奈米孔洞感光材料之研究
    本研究是合成含有tert-butoxycarbonyl(t-BOC) group的壓克力系感光型高分子,並在感光材料組成份中添加光酸產生劑(photo Active generator,PAC),於微影過程中進行UV曝光時,曝光區的光酸產生劑受光子誘發形成質子酸(bronsted acid),並在曝後烤的過程中(加熱110℃~180℃),質子酸與tert-butoxycarbonyl acrylic copolymer發生化學反應,即質子酸催化t-BOC group,產生去保護反應(deprotection),形成壓克力酸高分子及異丁烯(isobutene)。因此,使曝光區較易溶於鹼性溶液,非曝光區因未產生壓克力酸,故較難溶於鹼性溶液,亦即曝光區和非曝光區對於鹼性顯影液溶解度具有差異性而達到圖案轉移目的。而isobutene經加熱逸散在polymer matrix中,冷卻後即可形成奈米孔洞(nanoporous)。本研究旨在探討含t-BOC group之感光型高分子,在光微影過程中奈米微孔洞產生之關鍵因素。
    本研究成功合成了四種不同t-BOC含量配方比例的binder,並調製多種不同組成份之感光材料,探討porogene、thermal effect、exposure dosage等因素控制porosity 及 pore size,使達到調整孔洞大小及分佈之目的。
    本研究利用TEM及SEM鑑定確認光敏感性材料產生之奈米微孔洞可達30nm以下,並驗證介電常數(dielectric constant)隨著奈米微孔洞增加而降低,目前介電常數可從3.5降低達到2.6以下。

    第二部分 壓克力系非接觸式液晶配向感光材料之研究
    本研究主要是設計合成dimethacrylate系列的感光性化合物,具有可行光聚合反應的雙鍵官能基,可利於進行光二聚合法的感光性高分子,以利光配向方法的應用。此感光性聚合物之重複單元具有兩種乙烯雙鍵,第一種乙烯雙鍵具有高於第二種乙烯雙鍵之反應性,可進行聚合形成高分子主鏈,第二種乙烯雙鍵可以兩段式紫外線處理形成配向膜。因此,選擇的感光性單體需含二個以上的乙烯雙鍵,可提高光敏感性並降低紫外線曝光量。另外,為了改善dimethacrylate系列高分子預傾角及錨定能偏低之問題而設計合成dimethacrylate fluoropentyl copolymer,並探討氟化含量對液晶預傾角及配向材料對液晶的錨定能之影響。研究結果確認含氟共聚合物配向膜進行光配向後,隨著含氟量增加預傾角亦隨之增加,耐熱性亦佳。同時驗證配向膜之含氟量增加時,配向膜之表面能越低,故液晶分子的預傾角亦應隨之提高。因此藉由設計不同含氟量共聚合物的配向膜,可具有調控液晶配向預傾角之能力。
    電漿束(Plasma)的配向較為強力,且配向膜材料不侷限於有感光性基團的材料。本研究利用原子力顯微鏡AFM掃描電漿束配向處理後的表面形態,藉以了解電漿束的配向機制。研究結果顯示plasma未處理的表面形態是無方向性的,加強電漿束掃描則明顯看到具有方向性微溝槽(microgrooves)的表面形態。而此具有方向性的微溝槽就是讓液晶得以有方向性排列的依據。AFM結果顯示PI 材料及dimethacrylate polymer 在plasma處理後均明顯可看到具有方向性微溝槽的表面形態。另外AFM也顯示PI 材料及dimethacrylate polymer 在刷膜 (rubbing) 配向處理後的確也產生微溝槽,只是rubbing微溝槽的均勻性(uniformity)較差,其微溝槽高度的一致性也比較低,而這也是rubbing配向的均勻性與對比都比plasma配向差的原因。


    Part 1 Photo-Induced Nano-Porosity of tert-Butoxycarbonyl Acrylic Photosensitive Material with Low Dielectric Constant

    We have reported a photosensitive system having low dielectric constant with nanoporous. The photosensitive system is patternable and the nano-porosity is generated through the combination of photo exposure and thermal treatment. Nanoporous were formed in a photosensitive material to reduce its dielectric constant. A tert-butoxycarbonyl (t-BOC) containing acrylic copolymer can be activated as a photosensitive material via photochemical reactions. Iodonium salt as a photo acid generator (PAG) was exposed to ultraviolet light with a wavelength of under 365nm to form the corresponding bronsted acid. The side chains of t-BOC were cleaved by this bronsted acid to yield isobutylene and acrylic acid groups. The small molecules of isobutylene thus formed were further heated in the polymer matrix to generate nanoporous. Notably, the t-BOC content and heat affect the dimensions and number of nanoporous. The dielectric constant decreased as the density of nanoporous increases. The formation of nanoporous was observed by TEM and SEM. Also, the mechanisms of formation of nanoporous and their effects on the dielectric constant were studied. The nanoporous photosensitive material can thus be applied in integrated circuits and the new generation of liquid crystal displays.

    Part 2 Non-contact Mode Liquid Crystal Alignment Film of Acrylic Photosensitive Material

    We have developed a new photosensitive material, which is applicable for photo-induced alignment layer for liquid crystal display. The synthesis and characterization of bis-methacrylic derivatives of p-aminophenol was explored. We were able to control the molecular weight of the dimethacrylate based photosensitive polymer via free radical polymerization. The polymerization selectivity of the double bonds in homopolymer could be verified with the solid state NMR.
    We have also developed a series of fluorinated dimethacrylate copolymers which are applicable for plasma treatment and useful for photo induced liquid crystal alignment layer. Our work covered the synthesized derivatives of alignment materials, characterized properties of the pretilt angle, and uniformity of liquid crystal alignment layer. The surface properties of alignment film and the liquid crystal pretilt angle were tailored by fluorinated dimethacrylate copolymer.
    The formation of orientational microgrooves on polymer films via anode layer thruster (ALT) plasma treatment was reported. The surface morphology of the plasma-treated polymer films was examined by using atomic force microscopy (AFM). The results show that the microgrooves are aligned periodically in the scan direction of the plasma beam. The microgrooves become more pronounced as the number of scans increases. The depth of the microgrooves and the azimuthal anchoring energy also increase with the number of the plasma beam scans.
    In addition, excellent alignment uniformity has been achieved by using the photo-induced process and the anode layer thruster plasma treatment. We find that the pretilt angle of LC cell by plasma treatment is higher than that of polarized UV treatment. The azimuthal anchoring energy measured is around 10-4 J/M2 by using the plasma treatment. The dimethacrylate-based photosentive polymer can be applied to the photo induced and plasma treated LC alignment layer.

    目 錄 中文摘要....................................................Ι 英文摘要...................................................Ⅳ 目錄...................................................... Ⅶ 圖目錄...................................................ⅩⅤ 表目錄.................................................ⅩⅩΙ 第一部分 壓克力系低介電奈米孔洞感光材料之研究..............1 第一章 緒論.................................................2 1.1 前言....................................................2 1.2 感光材料組成份..........................................6 1.3 有機低介電材料種類......................................8 1.4 有機低介電感光材料在平面顯示材料上之應用...............10 第二章文章回顧及研究動機...................................16 2.1 DNQ/Novolak光阻系統.................................16 2.2 化學增幅型感光材料(chemical amplified,CA).......18 2.3 t-BOC光阻…………...................................19 2.4 Acetal光阻...........................................21 2.5 ESCAP 光阻...........................................21 2.6 193nm Deep UV 感光系統.................................22 2.7 157nm光阻系統..........................................22 2.8 含矽系列低介電材料.....................................26 2.9 微孔洞系列低介電材料...................................27 2.10 研究動機..............................................29 第三章實驗部份.............................................33 3.1 實驗藥品...............................................33 3.2 實驗器材...............................................33 3.3 實驗設備...............................................34 3.4 實驗方法...............................................36 3.4.1 合成四種不同t-BOC含量之acrylic copolymer.............36 3.4.2 合成含有t-BOC acrylic copolymer之特性評估與檢測......38 3.4.2.1 Binder固成份檢測...................................38 3.4.2.3 Binder之酸價檢測...................................39 3.4.2.4 Binder分子量測試...................................39 3.4.2.5 合成Binder結構式鑑定(NMR)..........................40 3.4.2.6 合成Binder FTIR測試………..........................40 3.4.2.7 合成Binder熱性質測試(TGA,DSC) ....................41 3.5 感光組成物調配及微影製程條件...........................41 3.6 感光組成物調配及光微影製程之評估.......................44 3.6.1 光微影製程解析度測試.................................44 3.7 觀察圖案的解析度及奈米孔洞.............................45 3.8 介電常數測試...........................................46 第四章 結果與討論..........................................47 4.1 合成含有t-BOC acrylic copolymer之特性評估與檢測試.....47 4.1.1 Binder固成份檢測及酸價測試...........................47 4.2 合成 t-BOC acrylic copolymer鑑定.......................48 4.2.1 分子量測試.................... ......................48 4.2.2 1H-NMR及FTIR鑑定t-BOC acrylic copolymer...............51 4.2.3 合成t-BOC acrylic copolymer熱性質分析...............54 4.3 感光組成物調配及微影製程...............................56 4.3.1 比較不同t-BOC含量之copolymer對微影解像之影響.........60 4.3.2 比較PAG對微影解像之影響..............................62 4.3.3 比較不同曝後烤(PEB)溫度對微影解像之影響..............62 4.4 TEM 觀察nanoporous 產生結果............................63 4.5 SEM 觀察觀察圖案的解析度及奈米孔洞.....................65 4.6 t-BOC含量及曝後烤溫度對於介電常數之影響................67 4.7 SEM 觀察thermal energy因素對於porous影響...............69 4.8 比較t-BOC、PAG不同含量及曝後烤對於Dk之影響.............72 第五章 第一部分結論........................................76 第六章 參考文獻............................................79 第二部份 壓克力系非接觸式液晶配向感光材料之研究............84 第七章 緒論...............................................85 7.1背景說明...............................................85 7.2 現有刷磨配向的缺點及未來發展方向.......................86 第八章 文獻回顧及研究動機..................................91 8.1 UV光配向...............................................91 8.1.1 光配向原理...........................................91 8.1.2 光配向材料的種類.....................................93 8.1.3 光配向技術的其他應用.................................97 8.2 離子束配向方法.........................................98 8.2.1 離子束配向機制.......................................99 8.3 電漿束配向方法........................................102 8.3.1 電漿基本理論........................................102 8.3.2 電漿束配向材料選用..................................108 8.4 研究動機.............................................109 第九章 實驗部份...........................................114 9.1 實驗藥品..............................................114 9.2 實驗器材..............................................115 9.3 實驗設備..............................................115 9.4 實驗方法..............................................117 9.4.1 各式bis-methacrylic derivatives monomer 合成........117 9.4.2 Dimethacrylate homopolymer合成......................118 9.4.3 Dimethacrylate fluoropentyl copolymer合成...........119 9.5 合成化合物之檢測鑑定分析與特性評估....................120 9.5.1 Binder分子量測試....................................120 9.5.2 合成monomer及polymer結構式鑑定(NMR) ..............120 9.5.3 合成binder FTIR測試.................................121 9.5.4 合成polymer熱性質測試(TGA,DSC) ....................121 9.6 表面配向實驗方法......................................121 9.6.1 UV配向處理.........................................121 9.6.2 電漿束配向處理......................................122 9.7 液晶盒(LC cell)組裝...................................122 9.8 液晶盒(LC cell)量測...................................124 9.9錨定能(anchorning energy)量測..........................124 第十章 UV配向實驗結果.....................................128 10.1合成bis-methacrylic derivatives單體實驗結果…........128 10.1.1 紅外線光譜分析.....................................128 10.1.2 1H-NMR原子核磁共振光譜分析........................129 10.1.3 熔點測試(DSC)......................................130 10.2 合成dimethacrylic homopolymer.......................131 10.2.1 GPC測試分子量結果.................................131 10.2.2 Dimethacrylic homopolymer 之IR光譜圖...............131 10.2.3 Dimethacrylate homopolymer 1H-NMR測試結果..........134 10.2.4 Dimethacrylate Homopolymer 13C-NMR測試結果..........134 10.3.合成fluorinated dimethacrylate copolymer結果........136 10.3.1 Fluorinated dimethacrylate copolymer分子量.........136 10.3.2 Fluorinated dimethacrylate copolymer之含氟量….....137 10.4 合成dimethacrylate polymer之UV配向.................140 10.4.1 比較刷磨(rubbing)配向與UV配向之差異性..............141 10.4.2 不同UV曝光量對光配向之影響.......................142 10.4.3 不同偏光角度(polarizer)對光配向性之影響..........143 10.4.4.不同曝光量看配向均勻性............................144 10.4.5 比較不同dimethacrylate polymer之光配向能力........145 10.5 UV配向之預傾角量測..................................146 10.5.1曝光量對dimethacrylate高分子預傾角之影響..........146 10.5.2 Dimethacrylate polymer對預傾角變化情形............147 10.6含氟dimethacrylate copolymer對光配向之影響..........149 10.6.1含氟dimethacrylate copolymer對預傾角之影響........149 10.6.2 含氟 dimethacrylate copolymer之熱穩定性...........149 10.7 UV配向後錨定能(anchoring energy)量測................151 第十一章 Plasma配向處理與表面形態........................153 11.1 比較plasma及光配向之均勻性..........................156 11.2 Plasma配向處理後預傾角量測.........................157 11.3 Plasma配向處理後錨定能量測.........................158 11.4 Plasma配向膜熱穩定性測試(annealing test) ..........159 11.5 Fluorinated dimethacrylate copolymer之plasma配向..160 11.6 Plasma配向處理之掃描次數與錨定能...................163 11.7 Plasma配向處理前後之表面形態.......................164 11.7.1 PI材料plasma配向處理前後之表面形態..............164 11.7.2 Dimethacrylate材料plasma處理前後表面形態.... ...168 11.7.3 PI材料rubbing配向處理前後之表面形態........... ...169 第十二章 第二部份結論....................................171 第十三章 參考文獻................................. .....177

    第六章 參考文獻
    1. W.M.Moreau, "Semiconductor Lithography Principles, Practices and Materials", Plenum Dress, NY.USA,1988
    2. W.S.DeFost, "Photoresist Materials and Process "Mac Graw-Hill BOOK Co., Inc., New York, 1975
    3. H.Ito, C.G.Wilson. T.Davidson, "Polymers in Electronics”, ACS Sym. Ser. Vol, 242, p11,1984
    4. T.F.Yeh, H.Y.Shih, and A.Reiser, “Percolation view of novolak dissolution and dissolution inhibition”, Proc. SPIE, Vol. 1672, 204 ,1992
    5. 林松香, “IC光阻市場及技術發展趨勢”,工業材料, 11, 2001
    6. 林松香, “感光材料於電子產業之應用與商機”,工業材料,06, 2005
    7. A. Knop, L.A. Pilato, “Phenolic Resins:Chemistry Applications, and Performance" Springer-Verlag Berlin, P49~52, 1983
    8. R. Dammel, “Diazonaphthoquinoe-based resists”,SPIE tutorial texts series, volume TT 11, 1993
    9. 林松香,曾朝輝, “IC 光阻材料技術發展”工業材料, (上)9, 5, 2002,(中)10, 5, 2002,(下)11, 5, 2002
    10. 林松香, “深紫外光微影用正型含矽光阻之研究”, 工業材料, 06, 1999
    11. Hari Singh Nalwa, “Handbook of Low and High Dielectric Constant Materials and Their Applications” , Vol. 1
    12. Craig J. Hawker, JamesL. Hedrick, etc., “Supramolecular Approaches to Nanoscale Directric Foams for Advanced Microelectronic Devices” MRS Bulletin, p54~58, April 2000
    13. Chang-You Gao, An Li, Lin-Xian Feng, Xiao-Su Yi, Jia-Cong Shen, “Factors controlling surface morphology of porous polystyrene membranes prepared by thermally induced phase separation” , Polymer International, Volume 49,Issue 4, p323-328, 2000
    14. Stefan Walheim,, Erik Sch□ffer, J□rgen Mlynek and Ullrich Steiner, “Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings”, Science 22, VOL 283, No. 5401, p 520-522 January 1999
    15. Dhaval A. Doshi, Nicola K. Huesing ,Mengcheng Lu, Hongyou Fan, Yunfeng Lu, Kelly Simmons-Potter, B. G. Potter, Jr, Alan J. Hurd, and C. Jeffrey Brinker “Optically Defined Multifunctional Patterning of Photosensitive Thin-Film Silica Mesophases”, Science 6, p107-111, October 2000
    16. Hae-Jeong Lee, Christopher L. Soles, Da-Wei Liu, Barry J. Bauer, Wen-Li Wu, “ Pore Size Distributions in Low-k Dielectric Thin Films from X-ray Porosimetry”, Journal of Polymer Science Part B: Polymer Physics, Volume 40, Issue 19, p2170–2177, 2002
    17. Ting Xu, Ho-Cheol Kim, Jason DeRouchey, Chevey Seney, Catherine Levesque, Paul Martin, C.M. Stafford and T.P. Russell, “The influence of molecular weight on nanoporous polymer film”,Polymer 42, p9091-9095, 2001
    18. D.Q. Li and M. Ma, “Nanoporous Polymers: New Nanosponge Absorbent Media,filtration and Separation” Chem. Sci. Technol. ,p 26–28,26 December. 1999
    19. S.P. Nunes, “Recent Advances in the Controlled Formation of Pores in Membranes”,Trip Vo.5,No.8,June,1997
    20. Stefan Walheim, et al., “Structure Formation via Polymer Demixing in Spin-Cast Films”, Macromolecules,30, p4995-5003, 1997
    21. Sow-Hsin Chen and Sungmin Choi, “ Mesoscopic scale structures in self-organized surfactant solutions determined by small-angle neturon scattering” , Supramolecular science, Volume 5, Issues 3-4, p197-206, 1998
    22. Peter I. Ravikovitch and Alexander V. Neimark, “ Characterization of nanoporous materials from adsorption and desorption isotherms”, Elsevier Science, Volumes 187-188, p 11-21 , 2001
    23. Asnaghi, M. Giglio, A. Bossi and P. G. Righetti, “Spinodal decomposition driven microsegregation in polyacrylamide gels” , Journal of Molecular Structure 383. p37-42, 1996
    24. Peter I. Ravikovitch, Gary L. Haller and Alexander V. Neimark, “Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts”,Advances in Colloid and Interface Science, Volumes 76-77, p203-226, 1998
    25. Ariya Akthakul, William F. McDonald and Anne M. Mayes, “Noncircular pores on the surface of asymmetric polymer membranes: evidence of pore formation via spinodal demixing”, Journal of Membrane Science 208, p147-155, 2002
    26. B. F. Barton and A. J. McHugh, “Modeling the dynamics of membrane structure formation in quenched polymer solutions”,Journal of Membrane Science, Volume 166, Issue 1, p 119-125, 2000
    27. B. Bergues, J. Lekki, A. Budkowski, P. Cyganik, M. Lekka, A. Bernasik, J. Rysz and Z. Postawa, “Phase decomposition in polymer blend films cast on homogeneous substrates modified by self-assembled monolayers”,Vacuum 63, Issues, p297-305, 2001
    28. Seung-Won Song and John M. Torkelson, “Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions”, Journal of Membrane Science, Volume 98,Issue 3, p 209-222, 1995
    29. Stefan Walheim, Martin B□ltau, J□rgen Mlynek, Georg Krausch, and Ullrich Steiner, “Structure formation via polymer demixing in spin-cast films”, Macromolecules,30(17),p4995-5003, 1997
    30. Guangming Wu, Jue Wang, Jun Shen, Tianhe Yang, Qinyuan Zhang, Bin Zhou, Zhongsheng Deng, Bin Fan, Dongping Zhou and Fengshan Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings”, Materials Science and Engineering B, Volume 78, Issues 2-3, p135-139, 2000
    31. Ting Xu, Ho-Cheol Kim, Jason DeRouchey, Chevey Seney, Catherine Levesque, Paul Martin, C.M. Stafford and T.P. Russell, “The influence of molecular weight on nanoporous polymer films”, Polymer, Volume 42,Issue 21, p9091-9095 2001
    32. 林松香,李榮哲, “TFT有機低介電感光材料技術”, 工業材料 3,2002
    33. Song-Shiang Lin and Rong-Jer Lee, “New nanoporous low dielectric constant material for TFT passivation”, Proc. SPIE 4918, 294, 2002
    第十三章 參考文獻
    1. 陳嘉明、劉惠玫、林松香、李政道,“光配向技術及其應用” 工業材料,2005/06 p168~173
    2. 黃素貞,“液晶顯示器” ,科學發展,2002年1月,349期,p30∼37。
    3. 李政道,“彩色液晶顯示器的配向技術與材料進展”,工業材料,150, 1999, p115~124
    4. 竹內安正,“液晶光配向技術的與材料最新進展”,機能材料(日),1998,V18(11),p21.
    5. 內田龍男,“刷磨技術與配向評估”,液晶學會演講錄(日),1998, V10,1.
    6. Y. Makita, T. Natsu, S. Kimura, S. Nakata, M. Kimura, Y. Matsuki, and S. Takahra, J. “Photo Alignment Materials with High Sensitivity to Near UV Light”, Photopoly. Sci. Technol. 11, 187, 1998
    7. J. Sto1 hr, M. G. Samant, A. Cossy-Favre, J. Dı´az, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces”, Macromolecules 1998, 31, 1942-1946
    8. W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light”, Nature, vol.351, 1991, pp.49-50.
    9. M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov, Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers”,Jpn. J. Appl. Phys., 31, 2155, 1992.,
    10. T. Yamamoto, M. Hasegawa, H. Hatoh, “Non-Polarized UV Light on a Polyimide Layer ”SID 96 Digest, 642, 1996
    11. Alexey Bobrovsky, Natalia Boiko, Valery Shibaev, Joachim Stumpe, J. Photochemistry and Photobiology A: Chemistry, 163, 347, 2004
    12. Jeoung-Yeon Hwang, Dae-Shik Seo, Jong-Ho Son, Dong Hack Shu, Jpn. J. Appl. Phys. Vol.40, L761, 2001
    13. O. Yaroshchuk, L. G. Cada, M. Sonpatki, L.-C. Chien, Applied Physics Letters, Vol.79(1), 30, 2001
    14. Devanand Shenoy, Leonid Beresnev, David Holt, Ranganathan Shashidhar, Applied Physics Letters, Vol.80(9), 1538, 2002
    15. Denis Andrienko, Yuri Kurioz, Yuri RReznikov, Charles Rosenblatt, Rolfe Petschek, Oleg Lavrentovich, Darius Subacius, J. Appl. Phys. 83(1), 50, 1998
    16. Adam E. A. Contoret, Simon R. Farrar, Peregrine O. Jackson, Sultan M. Khan, Louise May, Mary O’Neill, J. Edward Nicholls, Stephen M. Kelly, Gary J. Richards, Adv. Mater. 12(13), 971, 2000
    17. I. Drevens ek Olenik, M. W. Kim, A. Rastegar, Th. Rasing, Appl. Phys. B, “Probing of photo-induced alignment in poly(vinyl cinnamate) films by surface second harmonic generation
    18. Jiyu Fang, Craig Whitaker, Brian Weslowski, Mu-Sen Chen, Jawad Naciri, Ranganathan Shashidhar, Journal of Materials Chemistry,, 11, 2992, 2001
    19. E. Hoffmann, H. Klausmann, E. Ginter, P. M. Knoll, “Development of a Dualdomain TFT-LCD by Optical Patterning” Proc. SID98, 734 - 727 (1998). 146
    20. Martin Schadt, Hubert Seiberle, ROLIC, “Optical Patterning of Multidomain Liquid Crystal Displays with wide viewing angles” Nature 381,p 212 – 215,16 May, 1996
    21. 吳仲文,“離子束配向技術” 工業材料, 2004,08
    22. J. P. Doyle et al., “Ion beam alignment for liquid crystal display fabrication”, Nucl. Instr. And Meth. In Phys. Res., 2003, 206, p. 467
    23. H. Mada et al., “A Proposal on and Verification of Surface Alignment of Liquid Crystal Aligned by Frictional Rubbing”, Jpn. J. Appl. Phys, 1993, 32, p L1245
    24. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. Sands, S. K. Kumar, “Near-surface alignment of polymers in rubbed films”, Nature, 1995, 374, p 709
    25. St□hr J, Samant MG, L□ning J, et al., “Liquid crystal alignment on carbonaceous surfaces with orientational order”. Science, 292, p 2299, 2001
    26. B. F. MacDonal, W. Zheng, R.J. Cole, et al., “RAS -- a New Process Control Tool in Liquid Crystal Device Fabrication”, J. Phys.D: Appl. Phys. Vol 35, L41, 2002
    27. John L. West, Linli Su, Kateryna Artyushkova, Jabari Farrar, Julia E. Fulghum, “Study of Ion Beam Alignment of Liquid Crystals on Polymer Substrate”, SID 02 Digest, 48, p1102-1105, 2002
    28. A. Lien et al., “Development of a New LC Alignment Technology Using Ion Beam Treated Diamond Like Carbon Film”, 2003
    29. S. C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, and J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment” IBM J. of Research and Development, 42, p 537, 1998
    30. Oleg Yaroshchuk, Ruslan Kravchuk, Andriy Dobrovolskyy, Liou Qiu and Oleg D. Lavrentovich., “Two Modes of LC Parallel Alignment on the Plasma. Treated Substrates”, SID 03 DIGEST 1062, 2003
    31. Oleg. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, O. Lavrentovich, “Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates”. Liq.Cryst., 31, No6, 859-869 (2004)
    32. Callegari, Alessandro Cesare et al. “Dry processing for liquid-crystal displays using low energy ion bombardment”, US Patent 6,020,946 ,2000
    33. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.A. Lien et.al., “Atomic-beam alignment of inorganic materials for liquid-crystal displays”, Nature, 411, 56, 2001
    34. Y. Kato, Y. Nakagawa, Y. Saitoh, S. Odahara, M. Hasegawa, P. Chaudhari et al., “Hydrogenated amorphous carbon films used as an alignment layer for liquid crystal displays”, Eurodisplay, p525- 529, 2002
    35. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell, “Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order”, Science, Vol.292, 2299, 2001
    36. O.V. Yaroshchuk, R.M. Kravchuk, A.M. Dobrovolskyy, P.C. Liu, C.D. Lee, Plasma beam alignment for the large area substrates: equipment and process. J. Soc. Inf. Display, 13 (4), 289-294, 2005
    37. Lee, Seung Woo; Kim, Sang Il; Lee, Byeongdu; Choi, Wooyoung; Chae, Boknam; Kim, Seung Bin; Ree, Moonhor, “Photoreactions and Photoinduced Molecular Orientations of Films of a Photoreactive Polyimide and Their Alignment of Liquid Crystals”, Macromolecules, Vol.36, 6527, 2003
    38. Noritaka Matsuie, Yukio Ouchi, Hiroshi Oji, Eisuke Ito, Hisao Ishii, Kazuhiko Seki, Masaki Hasegawa, Michael Zharnikov, “UV-Photoinduced Surface Anisotropy of Polyimide Studied by Near-Edge X-Ray Absorption Fine Structure Spectroscopy”, Jpn. J. Appl. Phys. Vol.42, L67, 2003
    39. Soon Joon Rho., Day-kyu Lee, Hong Koo Baik, Jeoung-yeon Hwang, Yong-min Jo, Dae-shik Seo, “Investigation of the alignment phenomena using a-C:H thin films for liquid crystal alignment materials” ,Thin Solid Films, vol.420-421, p259, 2002
    40. Ji-Hyuk Choi; Moon-Ho Ham; Byeong-Yun Oh; Jeoung-Yeon Hwang; Sung-Ho Choi; Dae-Shik Seo; Jae-Min Myoung, “Effects of plasma treatments on correlation between chemical structures of DLC films and liquid crystal alignment”, Liquid CrystalsVolume 33, Issue 8 , P 947, 2006
    41. Hsin-Ying Wu and Ru-Pin Pan, "Comparison of Polar Anchoring Strength between the Ion-Beam Bombarded and Rubbed Polyimide Films with a Modified High-Electric-Field Technique" , Annual Meeting of ROC Taiwan Liquid Crystal Society, Hsinchu, Taiwan, p 98-101, 12, 2005
    42. 趙如蘋, "液晶表面定向強度及量測" , 電子與材料季刊,第28期,11月,2005
    43. 邱華鈺,液晶光配向膜之研究,交大電子物理所碩士論文, 2000
    44. 張忠益,紫外光照射光配向膜之方法及性質研究,交大電子物理所碩士論文, 2002
    45. 呂欣穎,溝槽配向定向強度對溫度變化之關係,交大電子物理所碩士論文, 2004
    第十三章 參考文獻
    1. 陳嘉明、劉惠玫、林松香、李政道,“光配向技術及其應用” 工業材料,2005/06 p168~173
    2. 黃素貞,“液晶顯示器” ,科學發展,2002年1月,349期,p30∼37。
    3. 李政道,“彩色液晶顯示器的配向技術與材料進展”,工業材料,150, 1999, p115~124
    4. 竹內安正,“液晶光配向技術的與材料最新進展”,機能材料(日),1998,V18(11),p21.
    5. 內田龍男,“刷磨技術與配向評估”,液晶學會演講錄(日),1998, V10,1.
    6. Y. Makita, T. Natsu, S. Kimura, S. Nakata, M. Kimura, Y. Matsuki, and S. Takahra, J. “Photo Alignment Materials with High Sensitivity to Near UV Light”, Photopoly. Sci. Technol. 11, 187, 1998
    7. J. Sto1 hr, M. G. Samant, A. Cossy-Favre, J. Dı´az, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces”, Macromolecules 1998, 31, 1942-1946
    8. W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light”, Nature, vol.351, 1991, pp.49-50.
    9. M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov, Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers”,Jpn. J. Appl. Phys., 31, 2155, 1992.,
    10. T. Yamamoto, M. Hasegawa, H. Hatoh, “Non-Polarized UV Light on a Polyimide Layer ”SID 96 Digest, 642, 1996
    11. Alexey Bobrovsky, Natalia Boiko, Valery Shibaev, Joachim Stumpe, J. Photochemistry and Photobiology A: Chemistry, 163, 347, 2004
    12. Jeoung-Yeon Hwang, Dae-Shik Seo, Jong-Ho Son, Dong Hack Shu, Jpn. J. Appl. Phys. Vol.40, L761, 2001
    13. O. Yaroshchuk, L. G. Cada, M. Sonpatki, L.-C. Chien, Applied Physics Letters, Vol.79(1), 30, 2001
    14. Devanand Shenoy, Leonid Beresnev, David Holt, Ranganathan Shashidhar, Applied Physics Letters, Vol.80(9), 1538, 2002
    15. Denis Andrienko, Yuri Kurioz, Yuri RReznikov, Charles Rosenblatt, Rolfe Petschek, Oleg Lavrentovich, Darius Subacius, J. Appl. Phys. 83(1), 50, 1998
    16. Adam E. A. Contoret, Simon R. Farrar, Peregrine O. Jackson, Sultan M. Khan, Louise May, Mary O’Neill, J. Edward Nicholls, Stephen M. Kelly, Gary J. Richards, Adv. Mater. 12(13), 971, 2000
    17. I. Drevens ek Olenik, M. W. Kim, A. Rastegar, Th. Rasing, Appl. Phys. B, “Probing of photo-induced alignment in poly(vinyl cinnamate) films by surface second harmonic generation
    18. Jiyu Fang, Craig Whitaker, Brian Weslowski, Mu-Sen Chen, Jawad Naciri, Ranganathan Shashidhar, Journal of Materials Chemistry,, 11, 2992, 2001
    19. E. Hoffmann, H. Klausmann, E. Ginter, P. M. Knoll, “Development of a Dualdomain TFT-LCD by Optical Patterning” Proc. SID98, 734 - 727 (1998). 146
    20. Martin Schadt, Hubert Seiberle, ROLIC, “Optical Patterning of Multidomain Liquid Crystal Displays with wide viewing angles” Nature 381,p 212 – 215,16 May, 1996
    21. 吳仲文,“離子束配向技術” 工業材料, 2004,08
    22. J. P. Doyle et al., “Ion beam alignment for liquid crystal display fabrication”, Nucl. Instr. And Meth. In Phys. Res., 2003, 206, p. 467
    23. H. Mada et al., “A Proposal on and Verification of Surface Alignment of Liquid Crystal Aligned by Frictional Rubbing”, Jpn. J. Appl. Phys, 1993, 32, p L1245
    24. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. Sands, S. K. Kumar, “Near-surface alignment of polymers in rubbed films”, Nature, 1995, 374, p 709
    25. St□hr J, Samant MG, L□ning J, et al., “Liquid crystal alignment on carbonaceous surfaces with orientational order”. Science, 292, p 2299, 2001
    26. B. F. MacDonal, W. Zheng, R.J. Cole, et al., “RAS -- a New Process Control Tool in Liquid Crystal Device Fabrication”, J. Phys.D: Appl. Phys. Vol 35, L41, 2002
    27. John L. West, Linli Su, Kateryna Artyushkova, Jabari Farrar, Julia E. Fulghum, “Study of Ion Beam Alignment of Liquid Crystals on Polymer Substrate”, SID 02 Digest, 48, p1102-1105, 2002
    28. A. Lien et al., “Development of a New LC Alignment Technology Using Ion Beam Treated Diamond Like Carbon Film”, 2003
    29. S. C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, and J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment” IBM J. of Research and Development, 42, p 537, 1998
    30. Oleg Yaroshchuk, Ruslan Kravchuk, Andriy Dobrovolskyy, Liou Qiu and Oleg D. Lavrentovich., “Two Modes of LC Parallel Alignment on the Plasma. Treated Substrates”, SID 03 DIGEST 1062, 2003
    31. Oleg. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, O. Lavrentovich, “Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates”. Liq.Cryst., 31, No6, 859-869 (2004)
    32. Callegari, Alessandro Cesare et al. “Dry processing for liquid-crystal displays using low energy ion bombardment”, US Patent 6,020,946 ,2000
    33. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.A. Lien et.al., “Atomic-beam alignment of inorganic materials for liquid-crystal displays”, Nature, 411, 56, 2001
    34. Y. Kato, Y. Nakagawa, Y. Saitoh, S. Odahara, M. Hasegawa, P. Chaudhari et al., “Hydrogenated amorphous carbon films used as an alignment layer for liquid crystal displays”, Eurodisplay, p525- 529, 2002
    35. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell, “Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order”, Science, Vol.292, 2299, 2001
    36. O.V. Yaroshchuk, R.M. Kravchuk, A.M. Dobrovolskyy, P.C. Liu, C.D. Lee, Plasma beam alignment for the large area substrates: equipment and process. J. Soc. Inf. Display, 13 (4), 289-294, 2005
    37. Lee, Seung Woo; Kim, Sang Il; Lee, Byeongdu; Choi, Wooyoung; Chae, Boknam; Kim, Seung Bin; Ree, Moonhor, “Photoreactions and Photoinduced Molecular Orientations of Films of a Photoreactive Polyimide and Their Alignment of Liquid Crystals”, Macromolecules, Vol.36, 6527, 2003
    38. Noritaka Matsuie, Yukio Ouchi, Hiroshi Oji, Eisuke Ito, Hisao Ishii, Kazuhiko Seki, Masaki Hasegawa, Michael Zharnikov, “UV-Photoinduced Surface Anisotropy of Polyimide Studied by Near-Edge X-Ray Absorption Fine Structure Spectroscopy”, Jpn. J. Appl. Phys. Vol.42, L67, 2003
    39. Soon Joon Rho., Day-kyu Lee, Hong Koo Baik, Jeoung-yeon Hwang, Yong-min Jo, Dae-shik Seo, “Investigation of the alignment phenomena using a-C:H thin films for liquid crystal alignment materials” ,Thin Solid Films, vol.420-421, p259, 2002
    40. Ji-Hyuk Choi; Moon-Ho Ham; Byeong-Yun Oh; Jeoung-Yeon Hwang; Sung-Ho Choi; Dae-Shik Seo; Jae-Min Myoung, “Effects of plasma treatments on correlation between chemical structures of DLC films and liquid crystal alignment”, Liquid CrystalsVolume 33, Issue 8 , P 947, 2006
    41. Hsin-Ying Wu and Ru-Pin Pan, "Comparison of Polar Anchoring Strength between the Ion-Beam Bombarded and Rubbed Polyimide Films with a Modified High-Electric-Field Technique" , Annual Meeting of ROC Taiwan Liquid Crystal Society, Hsinchu, Taiwan, p 98-101, 12, 2005
    42. 趙如蘋, "液晶表面定向強度及量測" , 電子與材料季刊,第28期,11月,2005
    43. 邱華鈺,液晶光配向膜之研究,交大電子物理所碩士論文, 2000
    44. 張忠益,紫外光照射光配向膜之方法及性質研究,交大電子物理所碩士論文, 2002
    45. 呂欣穎,溝槽配向定向強度對溫度變化之關係,交大電子物 第十三章 參考文獻
    1. 陳嘉明、劉惠玫、林松香、李政道,“光配向技術及其應用” 工業材料,2005/06 p168~173
    2. 黃素貞,“液晶顯示器” ,科學發展,2002年1月,349期,p30∼37。
    3. 李政道,“彩色液晶顯示器的配向技術與材料進展”,工業材料,150, 1999, p115~124
    4. 竹內安正,“液晶光配向技術的與材料最新進展”,機能材料(日),1998,V18(11),p21.
    5. 內田龍男,“刷磨技術與配向評估”,液晶學會演講錄(日),1998, V10,1.
    6. Y. Makita, T. Natsu, S. Kimura, S. Nakata, M. Kimura, Y. Matsuki, and S. Takahra, J. “Photo Alignment Materials with High Sensitivity to Near UV Light”, Photopoly. Sci. Technol. 11, 187, 1998
    7. J. Sto1 hr, M. G. Samant, A. Cossy-Favre, J. Dı´az, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic Origin of Liquid Crystal Alignment on Rubbed Polymer Surfaces”, Macromolecules 1998, 31, 1942-1946
    8. W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light”, Nature, vol.351, 1991, pp.49-50.
    9. M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov, Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers”,Jpn. J. Appl. Phys., 31, 2155, 1992.,
    10. T. Yamamoto, M. Hasegawa, H. Hatoh, “Non-Polarized UV Light on a Polyimide Layer ”SID 96 Digest, 642, 1996
    11. Alexey Bobrovsky, Natalia Boiko, Valery Shibaev, Joachim Stumpe, J. Photochemistry and Photobiology A: Chemistry, 163, 347, 2004
    12. Jeoung-Yeon Hwang, Dae-Shik Seo, Jong-Ho Son, Dong Hack Shu, Jpn. J. Appl. Phys. Vol.40, L761, 2001
    13. O. Yaroshchuk, L. G. Cada, M. Sonpatki, L.-C. Chien, Applied Physics Letters, Vol.79(1), 30, 2001
    14. Devanand Shenoy, Leonid Beresnev, David Holt, Ranganathan Shashidhar, Applied Physics Letters, Vol.80(9), 1538, 2002
    15. Denis Andrienko, Yuri Kurioz, Yuri RReznikov, Charles Rosenblatt, Rolfe Petschek, Oleg Lavrentovich, Darius Subacius, J. Appl. Phys. 83(1), 50, 1998
    16. Adam E. A. Contoret, Simon R. Farrar, Peregrine O. Jackson, Sultan M. Khan, Louise May, Mary O’Neill, J. Edward Nicholls, Stephen M. Kelly, Gary J. Richards, Adv. Mater. 12(13), 971, 2000
    17. I. Drevens ek Olenik, M. W. Kim, A. Rastegar, Th. Rasing, Appl. Phys. B, “Probing of photo-induced alignment in poly(vinyl cinnamate) films by surface second harmonic generation
    18. Jiyu Fang, Craig Whitaker, Brian Weslowski, Mu-Sen Chen, Jawad Naciri, Ranganathan Shashidhar, Journal of Materials Chemistry,, 11, 2992, 2001
    19. E. Hoffmann, H. Klausmann, E. Ginter, P. M. Knoll, “Development of a Dualdomain TFT-LCD by Optical Patterning” Proc. SID98, 734 - 727 (1998). 146
    20. Martin Schadt, Hubert Seiberle, ROLIC, “Optical Patterning of Multidomain Liquid Crystal Displays with wide viewing angles” Nature 381,p 212 – 215,16 May, 1996
    21. 吳仲文,“離子束配向技術” 工業材料, 2004,08
    22. J. P. Doyle et al., “Ion beam alignment for liquid crystal display fabrication”, Nucl. Instr. And Meth. In Phys. Res., 2003, 206, p. 467
    23. H. Mada et al., “A Proposal on and Verification of Surface Alignment of Liquid Crystal Aligned by Frictional Rubbing”, Jpn. J. Appl. Phys, 1993, 32, p L1245
    24. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. Sands, S. K. Kumar, “Near-surface alignment of polymers in rubbed films”, Nature, 1995, 374, p 709
    25. St□hr J, Samant MG, L□ning J, et al., “Liquid crystal alignment on carbonaceous surfaces with orientational order”. Science, 292, p 2299, 2001
    26. B. F. MacDonal, W. Zheng, R.J. Cole, et al., “RAS -- a New Process Control Tool in Liquid Crystal Device Fabrication”, J. Phys.D: Appl. Phys. Vol 35, L41, 2002
    27. John L. West, Linli Su, Kateryna Artyushkova, Jabari Farrar, Julia E. Fulghum, “Study of Ion Beam Alignment of Liquid Crystals on Polymer Substrate”, SID 02 Digest, 48, p1102-1105, 2002
    28. A. Lien et al., “Development of a New LC Alignment Technology Using Ion Beam Treated Diamond Like Carbon Film”, 2003
    29. S. C. A. Lien, P. Chaudhari, J. A. Lacey, R. A. John, and J. L. Speidell, “Active-matrix display using ion-beam-processed polyimide film for liquid crystal alignment” IBM J. of Research and Development, 42, p 537, 1998
    30. Oleg Yaroshchuk, Ruslan Kravchuk, Andriy Dobrovolskyy, Liou Qiu and Oleg D. Lavrentovich., “Two Modes of LC Parallel Alignment on the Plasma. Treated Substrates”, SID 03 DIGEST 1062, 2003
    31. Oleg. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, O. Lavrentovich, “Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates”. Liq.Cryst., 31, No6, 859-869 (2004)
    32. Callegari, Alessandro Cesare et al. “Dry processing for liquid-crystal displays using low energy ion bombardment”, US Patent 6,020,946 ,2000
    33. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.A. Lien et.al., “Atomic-beam alignment of inorganic materials for liquid-crystal displays”, Nature, 411, 56, 2001
    34. Y. Kato, Y. Nakagawa, Y. Saitoh, S. Odahara, M. Hasegawa, P. Chaudhari et al., “Hydrogenated amorphous carbon films used as an alignment layer for liquid crystal displays”, Eurodisplay, p525- 529, 2002
    35. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell, “Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order”, Science, Vol.292, 2299, 2001
    36. O.V. Yaroshchuk, R.M. Kravchuk, A.M. Dobrovolskyy, P.C. Liu, C.D. Lee, Plasma beam alignment for the large area substrates: equipment and process. J. Soc. Inf. Display, 13 (4), 289-294, 2005
    37. Lee, Seung Woo; Kim, Sang Il; Lee, Byeongdu; Choi, Wooyoung; Chae, Boknam; Kim, Seung Bin; Ree, Moonhor, “Photoreactions and Photoinduced Molecular Orientations of Films of a Photoreactive Polyimide and Their Alignment of Liquid Crystals”, Macromolecules, Vol.36, 6527, 2003
    38. Noritaka Matsuie, Yukio Ouchi, Hiroshi Oji, Eisuke Ito, Hisao Ishii, Kazuhiko Seki, Masaki Hasegawa, Michael Zharnikov, “UV-Photoinduced Surface Anisotropy of Polyimide Studied by Near-Edge X-Ray Absorption Fine Structure Spectroscopy”, Jpn. J. Appl. Phys. Vol.42, L67, 2003
    39. Soon Joon Rho., Day-kyu Lee, Hong Koo Baik, Jeoung-yeon Hwang, Yong-min Jo, Dae-shik Seo, “Investigation of the alignment phenomena using a-C:H thin films for liquid crystal alignment materials” ,Thin Solid Films, vol.420-421, p259, 2002
    40. Ji-Hyuk Choi; Moon-Ho Ham; Byeong-Yun Oh; Jeoung-Yeon Hwang; Sung-Ho Choi; Dae-Shik Seo; Jae-Min Myoung, “Effects of plasma treatments on correlation between chemical structures of DLC films and liquid crystal alignment”, Liquid CrystalsVolume 33, Issue 8 , P 947, 2006
    41. Hsin-Ying Wu and Ru-Pin Pan, "Comparison of Polar Anchoring Strength between the Ion-Beam Bombarded and Rubbed Polyimide Films with a Modified High-Electric-Field Technique" , Annual Meeting of ROC Taiwan Liquid Crystal Society, Hsinchu, Taiwan, p 98-101, 12, 2005
    42. 趙如蘋, "液晶表面定向強度及量測" , 電子與材料季刊,第28期,11月,2005
    43. 邱華鈺,液晶光配向膜之研究,交大電子物理所碩士論文, 2000
    44. 張忠益,紫外光照射光配向膜之方法及性質研究,交大電子物理所碩士論文, 2002
    45. 呂欣穎,溝槽配向定向強度對溫度變化之關係,交大電子物理所碩士論文, 2004
    理所碩士論文, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE