簡易檢索 / 詳目顯示

研究生: 戴玉龍
Yu-Lung Tai
論文名稱: 氧化釔添加對鎳觸媒擔載在氧化鈰擔體上行二氧化碳與甲烷重組反應之研究
Effect of yttria addition on ceria-supported nickel catalyst for carbon dioxide reforming of methane
指導教授: 黃大仁教授
Ta-Jen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
中文關鍵詞: 甲烷二氧化碳二氧化碳重組反應鎳金屬金屬-擔體相互作用力
外文關鍵詞: methane, carbon dioxide, CO2 reforming, Nickel, metal-support interaction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主題是利用氧化鈰與氧化釔添加氧化鈰(Yttria-Doped Ceria , 簡稱YDC)來研究鎳金屬與擔體間的作用力對甲烷-二氧化碳重組反應所造成的影響。實驗為固定鎳擔載量(2wt%),製備不同釔含量的Ni/YDC觸媒。來研究鎳金屬與氧化鈰擔體間的相互作用力對甲烷-二氧化碳重組反應的影響。
    研究結果顯示金屬與擔體間的作用力會對活性金屬的分散度(Dispersion)與構型(Morphology)產生影響。因甲烷-二氧化碳重組反應乃為一種結構敏感性的反應(structure sensitivity),反應與鎳金屬整體表面大小(ensemble size)與構型息息相關,由先前文獻上的記載與吾人實驗的結果顯示Ni – Cen+間的作用力似乎是存在的,由於強金屬-擔體作用力(簡稱SMSI)以及其他相關的效應與擔體的還原性有密切的關係,而添加氧化釔之後改變了擔體的可還原性(reducibility)進而會對金屬與擔體間的作用力產生影響並且更進一步對甲烷-二氧化碳重組反應造成顯著的影響。由程溫還原實驗的結果發現Ni/YDC觸媒會出現比整體(Bulk)氧化鎳還要低溫的還原峰,而且波峰的面積與型態(profile)會隨著氧化釔的添加量不同而有所改變。判斷造成此結果的原因和觸媒上鎳金屬構型的改變有關。而配合程溫還原與活性測試的研究結果可以推論Ni-Cen+間確有作用力存在,除此之外更可利用此種作用力的存在來製備出更具抗積碳性( coking resistivity )的觸媒。

    除了金屬表面大小(ensemble size)和構型(morphology)的效應造成重組反應的高穩定性與活性外。使用Ni/CeO2觸媒更可以產生一個獨特的Ce3+離子的界面活性中心,並由於擔載在觸媒表面上的鎳金屬與鄰接的氧化鈰間會有氧遷移(Oxygen migration)的機制存在,所以使得Ce3+離子能夠於甲烷-二氧化碳重組反應的反應條件下生成與存活,藉由加速界面反應( CHxO中間體的生成與分解,並且此反應已經被廣為接受為甲烷-二氧化碳重組反應的速率決定步驟 )可加速產物的生成與積碳的移除,進而得到高活性與穩定性的觸媒。


    Interaction between metal and support influence catalytic behavior apparently. To obtain insight into the effect of metal–support interaction (MSI) in the CO2 reforming of CH4, the reaction was studied using pure CeO2 and yttria-doped ceria (YDC), respectively. For comparison, Ni/γ-Al2O3 catalysts were also prepared. The catalysts were characterized by temperature-programmed reduction (TPR), electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). For Ni/CeO2 and Ni/YDC catalysts, two TPR peak, namely β and γ, were observed. Specific rates (μ mol/(s g cat) ) for the CO2 reforming of CH4 decrease in the order Ni/CeO2 > Ni/5YDC > Ni/10YDC > Ni/20YDC > Ni/40YDC > Ni/γ-Al2O3. Ni/γ-Al2O3 showed appreciable activity for CH4–CO2 reforming. Compare to the Ni/ γ-Al2O3 catalysts Ni/CeO2 showed a dramatic increase in activity is attributed to the creation of new sites in the metal–support interaction region which promote CH4 dissociation, CO2 dissociation and reduction, and subsequent CHxO decomposition, beside activity, a dramatic stability is also fund, combination the result of temperature–programmed hydrogenation of used catalysts and temperature–programmed reduction of fresh catalysts clearly showed that the morphology of Ni on CeO2 surface consisted of very thin platelets and inhibit the rate of deep dehydrogenation of CH4 to carbon, thus improving activity maintenance.

    一.緒論………………………………………………………1 二.理論與文獻回顧 2-1反應相關的化學反應方程式……………………………3 2-2甲烷在觸媒表面的活化過程……………………………4 2-3二氧化碳在觸媒表面的活化過程………………………6 2-4觸媒表面上的積碳現象…………………………………6 2-5影響表面上碳沈積的因素………………………………8 2-5-1活性金屬表面整體大小的影響………………………8 2-5-2擔體鹼性的影響………………………………………9 2-5-3觸媒結構的影響………………………………………9 2-5-4擔體酸性的影響………………………………………11 2-5-5氫氣溢流效應的影響…………………………………11 2-5-6金屬本質的影響………………………………………11 2-6溢流現象…………………………………………………12 2-7強金屬擔體作用力………………………………………12 2-8導氧離子氧化物與氧空洞擔體…………………………13 2-8-1導氧離子氧化物………………………………………13 2-8-2氧空洞擔體……………………………………………13 2-9氧化鈰……………………………………………………16 2-10 動力模式與反應機構…………………………………17 2-11 觸媒的選擇……………………………………………20 三.實驗方法與步驟 3-1藥品………………………………………………………22 3-2觸媒種類及製備…………………………………………22 3-2-1觸媒種類………………………………………………22 3-2-2觸媒製備………………………………………………23 3-3實驗裝置與實驗方法……………………………………26 3-3-1 二氧化碳-甲烷重組反應系統………………………26 3-3-2 BET表面積……………………………………………27 3-3-3程溫還原………………………………………………30 3-3-4 X-ray粉末繞射………………………………………30 3-3-5程溫氧化………………………………………………30 3-3-6電子順磁共振測定……………………………………32 四.結果與討論………………………………………………33 4-1擔體的鑑定………………………………………………33 4-1-1 XRD圖譜分析…………………………………………33 4-1-2 TPR圖譜鑑定…………………………………………33 4-2 BET表面積分析…………………………………………36 4-3程溫還原圖譜分析………………………………………36 4-4 二氧化碳-甲烷重組反應活性測試……………………41 總結…………………………………………………………55 五.參考文獻…………………………………………………56 圖目錄 圖2-1、TiO2移動至金屬表面示意圖………………………10 圖2-2、螢石型氧化物之結構………………………………14 圖3-1、觸媒鍛燒系統裝置圖………………………………25 圖3-2、 二氧化碳-甲烷重組反應裝置圖…………………28 圖3-3、 BET表面積系統裝置圖……………………………29 圖3-4、程溫還原系統裝置圖………………………………31 圖4-1、 XYDC擔體的XRD光譜圖……………………………34 圖4-2、 XYDC擔體的TPR圖譜………………………………35 圖4-3、Ni/XYDC觸媒的BET表面積趨勢圖…………………37 圖4-4、Ni/γ-alumina與Ni/XYDC觸媒之程溫還原圖譜…39 圖4-5、觸媒活性維持圖……………………………………43 圖4-6、 反應完成後觸媒之TPH圖譜………………………46 圖4-7、 零下196℃的CeO2和YDC之EPR光譜………………52 圖4-8、Y10DC之XPS光譜……………………………………54 表目錄 表3-1觸媒種類………………………………………………22 表4-1 The Integrated Values of TPR peak of NiO/YDC catalysts ………40 表4-2 Catalyst Activity at 723K………………………44

    [1] B.Delmon, “How to Reduce the Greenhouse-Effect, and a Few Other Questions Concerning Catalysis, ”Appl. Catal. B, 1 (1992) 139.
    [2] T.A. Chubb., “Characteristics of CO2-CH4 Reforming-Methanation Cycle Relevant to the Solchem Thermochemical Power System, ” Sol. Energy, 24 (1980) 341.
    [3] M. C. J. Bradford and M. A. Vannice, “Catalytic Reforming of Methane with Carbon-Dioxide over Nickel-Catalysts .1. Catalyst Characterization and Activity, ” Appl. Catal. A.: General, 142 (1996) 73.
    [4] M. C. J. Bradford and M. A. Vannice, “Catalytic Reforming of Methane with Carbon-Dioxide over Nickel-Catalysts .2. Reaction, ”Appl. Catal. A.: General, ”142 (1996) 97.
    [5] M. C. J. Bradford and M. A. Vannice, “CO2 Reforming of CH4 over Supported Pt Catalysts, ”J. Catal., 173 (1998) 157.
    [6] M. C. J. Bradford and M. A. Vannice, “CO2 Reforming of CH4 over Supported Ru Catalysts, ”J. Catal., 183 (1999) 69.
    [7] M. C. J. Bradford and M. A. Vannice, “Metal-Support Interactions During the CO2 Reforming of CH4 over Model TiOx/Pt Catalysts, ”Catal. Lett., 48 (1997) 3.
    [8] D. C. Seet, M. C. Wheeler, and C. B. Mullins, “Mechanism of the Dissociative Chemisorption of Methane over Ir(110) – Trapping -Mediated or Direct, ”Chem. Phys. Lett., 266 (1997) 431.
    [9] M. C. J. Bradford and M. A. Vannice, Catal. Rev.-Sci. Eng., 41 (1999) 1.
    [10] B. Imelik and J.C. Vedrine, “Catalyst Characterization, Physical Techniques for Solid Materials, ” Plenum, New York, 1994.
    [11] E. G. M. Kuijpers, A. K. Breedijk, W. J. J. van der Wal, and J. W. Geus, “Chemisorption of Methane on Ni/SiO2 Catalysts and Reactivity of the Chemisorption Products Toward Hydrogen, ” J. Catal., 81 (1983) 429.
    [12] T. P. Beebe, Jr., D. W. Goodman, B. D. Kay, and J. T. Yates, Jr., “Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single-Crystal Surfaces, ”J. Chem. Phys., 87 (1987) 2305.
    [13] J. R. Rostrup-Nielsen and J.-H. Bak Hansen, “ CO2-Reforming of Methane over Transition-Metals, ” J. Catal., 144 (1993) 38.
    [14] F. Solymosi, J. Cserényi, and A. Erdöhelyi, “Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts, ” J. Catal., 141 (1993) 287.
    [15] A. Erdöhelyi, J. Cserényi, E. Papp, and F. Solymosi, “Catalytic Reaction of Methane with Carbon-Dioxide over Supported Palladium, ” Appl. Catal. A., 108 (1994) 205.
    [16] P. Ferreira-Aparicio, I. Rodríguez-Ramos, and A. Guerrero-Ruiz, “Methane Interaction with Silica and Alumina-Supported Metal- Catalysts, ”Appl. Catal A., 148 (1997) 343.
    [17] T.Osaki, H. Masuda, and T. Mori, “Intermediate Hydrocarbon Species for the CO2-CH4 Reaction on Supported Ni Catalysts, ”Catal. Lett., 29 (1994) 33.
    [18] J. Segner, C. T. Campbell, G. Doyen, and G. Ertl, “Catalytic- Oxidation of Co on Pt(111) - The Influence of Surface-Defects and Composition on the Reaction Dynamics, ” Surf. Sci., 138 (1984) 505.
    [19] B. Z. Nikolic, H. Huang, D. Gervasio, A. Lin, C. Fierro, R R. Adzic, and E. B. Yeager, “Electroreduction of Carbon-Dioxide on Platinum Single-Crystal Electrodes - Electrochemical and Insitu FTIR Studies, ” J. Electroanal. Chem., 295 (1990) 415.
    [20] A. Rodes, E. Pastor, and T. Iwasita, “Carbon-Dioxide Reduction on Platinum Single-Crystal Surfaces - Voltammetric and FTIRS Results, ” Anal. Quim., 89 (1993) 458.
    [21] R. E. Reitmeier, K. Atwood, H. A. Bennet, Jr., and H. M. Baugh, Ind. Eng. Chem., 40 (1948) 620.
    [22] A. Sacco, Jr., F. W. A. H. Geurts, G. A. Jablonski, S. Lee, and R. A. Gatell, “Carbon Deposition and Filament Growth on Fe-Foil, Co-Foil, and Ni-Foil Using CH4-H2-H2O-CO-CO2 Gas-Mixtures, ” J. Catal., 119 (1989) 322.
    [23] A. M. Gadalla and B. Bower, “The Role of Catalyst Support on the Activity of Nickel for Reforming Methane with CO2, ” Chem. Eng. Sci., 43 (1988) 3049.
    [24] J. T. Richardson and S. A. Paripatyadar, “Carbon-Dioxide Reforming of Methane with Supported Rhodium, ” Appl. Catal., 61 (1990) 293.
    [25] Z. L. Zhang and X. E. Verykios, “Carbon-Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 Catalysts, ” Appl. Catal. A., 138 (1996) 109.
    [26] N. M. Rodriguez, “A Review of Catalytically Grown Carbon Nano- fibers, ” J. Mater. Res. 8 (1993) 3233.
    [27] V. A. Tsipouriari, A. M. Efstathiou, Z.L. Zhang and X. E. Verykios, Catal. Today, 21 (1992) 417.
    [28] H. M. Swaan, V. C. M. Kroll, G. A. Martin and C. Mirodatos, Catal. Today., 21 (1992) 571.
    [29] M. T. Tavares, I. Alstrup, C. A. Berriardo and J. R. Rostrup-Nielsen, “CO Disproportionation on Silica-Supported Nickel and Nickel-Copper Catalysts, ” J. Catal., 147 (1994) 525.
    [30] V. V. Chesnokov, V. I. Zaikovskii, R. A. Buyanov, V. V. Molchanov and L . M. Plyasova, “Morphology of Carbon from Methane on Nickel- Containing Catalysts, ” Catal. Today, 24 (1995) 265.
    [31] V. A. Tsipouriari, A. M. Efstathiou, Z.L. Zhang and X. E. Verykios, Catal. Today, 21, 579 (1994).
    [32] A. Erdöhelyi, J. Cserényi, E. Papp, and F. Solymosi, “Catalytic Reaction of Methane with Carbon-Dioxide over Supported Pallad- ium , ”Appl. Catal. A: General, 108 (1994) 205.
    [33] T. Horiuchi, K. Sakuma, T. FuKui, Y. Kubo, T. Osaki, and T. Mori, “Suppression of Carbon Deposition in the CO2-Reforming of CH4 by Adding Basic Metal-Oxides to a Ni/Al2O3 Catalyst, ”Appl. Catal. A: General, 144 (1996) 111.
    [34] G. J. Kim, D.-S. Cho, K.-H. Kim, and J.-H. Kim, “The Reaction of CO2 with CH4 to Synthesize H2 and CO over Nickel-Loaded Y-Zeolites,” Catal. Lett., 28 (1994) 41.
    [35] S.-B. Tang, F.-l. Qiu, and S.-J. Lu., “ Effect of Supports on the Carbon Deposition of Nickel-Catalysts for Methane Reforming with CO2, ” Catal.Today, 24 (1995) 253.
    [36] Y.-G. Chen and J. Ren, “Conversion of Methane and Carbon- Dioxide into Synthesis Gas over Alumina-Supported Nickel- Catalysts - Effect of Ni-Al2O3 Interactions, ”Catal. Lett., 29 (1994) 39.
    [37] A. M. Gadalla and M. E. Sommer, “Synthesis and Characterization of Catalysts in the System Al2O3-MgO-NiO-Ni for Methane Reforming with CO2, ”J. Am. Ceram. Soc., 72 (1989) 683.
    [38] M.Masai, H.Kado, A. Miyake, S.Nishiyama, and S.Tsuruya, in Methane Conversion (B.M. Biddy. C. D.Chang, R. F. Howe, and S.Yurchak,eds),Elsevier, Amsterdam, 1988,P.67
    [39] S.Roberts and R. J. Gorte, “A Study of Pt Films on ZrO2(100), ”J. Phys. Chem.,95 (1991) 5600.
    [40] S.Roberts and R. J. Gorte, “A Comparison of Pt Overlayers on Alpha-Al2O3(0001), ZnO(0001)Zn, and ZnO(0001)O, ”J. Phys. Chem., 93 (1990) 5337.
    [41] O. Takayasu, N. Hongo and I. Matsuura, “Spillover Effect for the Reducing Reaction of CO2 with CH4 over SiO2-Supported Transition -Metal Catalysts Physically Mixed with MgO, ”Stud. Surf. Sci. Catal., 77 (1993) 305.
    [42] T. Inui, “Spillover Effect as the Key Concept for Realizing Rapid Catalytic Reactions, ”Stud. Surf. Sci. Catal., 77 (1993) 17.
    [43] Tauster S. J., S. C. Fung , and R. L. Garten ., “Strong Metal-Support Interactions. Group VIII Noble Metals Supported on TiO2, ”J. Amer. Chem. Soc. ,100, 170, (1978).
    [44] Tauster S. J. and S. C. Fung., “Strong Metal-Support Intractions: Occurrence among the Binary Oxides of Groups IIA-VB, ”J. Catal., 55, 29, (1978).
    [45] Stevenson, S. A., Dumesic, J. A., Baker, R. T. K., and Ruckenstein, E., Eds., Van Nostrand-Reinhold, New York,(1987).
    [46] Haller, G. L., and Resasco, D. E., (D. D. Eley, H. Pines, and P. B. Weise, Eds), Vol.36,P. 173. Academic Press, New York, (1989).
    [47] I. M. Bodrov and L. O. Apel’baum, Kinet. Catal., 8, 326 (1967)
    [48] J. Nakamura, K. Aikawa, K. Sato, and T. Uchijima, “Role of Support in Reforming of CH4 with CO2 over Rh Catalysts, ”Catal. Lett., 25, 265 (1994).
    [49] H.-Y. Wang and C.-T. Au, “CH4/CD4 Isotope Effects in the Carbon -Dioxide Reforming of Methane to Syngas over SiO2-Supported Nickel – Catalysts, ”Catal. Lett., 38 (1996) 77.
    [50] H.-Y. Wang and C.-T. Au, “Carbon-Dioxide Reforming of Methane to Syngas over SiO2-Supported Rhodium Catalysts, ” Appl. Catal. A: General, 155 (1997) 239.
    [51] Z. L. Zhang and X. E. Verykios, “Mechanistic Aspects of Carbon- Dioxide Reforming of Methane to Synthesis Gas over Ni Catalysts, ” Catal. Lett., 38 (1996) 175.
    [52] V. C. H. Kroll, H. M. Swaan, S. Lacombe, and C. Mirodato, “ Methane Reforming Reaction with Carbon-Dioxide over Ni/SiO2 Catalyst . 2. A Mechanistic Study, ” J. Catal., 164 (1996) 387.
    [53] K. Walter, O. V. Buyevskaya, D. Wolf, and M. Baerns, “Rhodium- Catalyzed Partial Oxidation of Methane to CO and H2 In-Situ Drifts Studies on Surface Intermediates, ”Catal. Lett., 29 (1994) 261.
    [54] Z. L. Zhang and X.E. Verykios., “Comparative-Study of Carbon- Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts, ”J. Phys. Chem., 100 (1996) 744.
    [55] Z. L. Zhang and X.E. Verykios., “A Stable and Active Nickel-Based Catalyst for Carbon-Dioxide Reforming of Methane to Synthesis Gas, ”J. Chem. Soc., Chem. Commum, 71 (1995).
    [56] H. C. Yao and Y. F. Y. Yao, “Ceria in Automotive Exhaust Catalysts . 1. Oxygen Storage, ”J. Catal., 86 (1984) 254.
    [57] C. de Leitenburg, A. Trovarelli, F. Zamar, S. Maschio, G. Dolcetti, and J. Llorca, J. Chem, Soc. Chem. Commun., (1995) 2181.
    [58] W. P. Dow, Y. P. Wang and T.-J.Haung, “TPR and XRD studies of yttria-doped ceria/γ-aluminaisupported copper oxide catalysts, ”Appl Catal A., 190 (2000) 25.
    [59] W. P. Dow., Y. P. Wang.,and T. J. Huang, “Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst. 1. Effect of Oxygen Vancancy of Support on Copper Oxide Reduction, ”J. Catal., 160 (1996) 155.
    [60] Subbarao, E. C., Ed., ( Solid Electrolytes and Their Application ) Plenum, New York, 1980.
    [61] Dell, R. M., and Hooper, A., ( Oxygen Ion Conductors in Solid Electrolytes: General Principles, Characterization, Material Application, ) Academic, New York 291 (1978).
    [62] V. C. H. Kroll, H. M. Swaan, and C. Mirodatos, “Methane Reforming Reaction with Carbon-Dioxide over Ni/SiO2 Catalyst .1. Deactivation Studies, ”J. Catal., 161 (1996) 409.
    [63] T. Jin, Y. Zhou, G. J. Mains, and J. M. White, “Infrared and X-Ray Photoelectron-Spectroscopy Study of CO and CO2 on Pt/CeO2, ”J. Phys. Chem., 91, 5931 (1987).
    [64] T. Jin, T. Okuhara, G. J. Mains, and J. M. White, “Temperature- Programmed Desorption of CO and CO2 from Pt/CeO2 - An Important Role for Lattice Oxygen in CO Oxidation, ” J. Phys. Chem., 91 (1987) 3310.
    [65] E. S. Putna, J. M. Vohs, and R. J. Gorte., “Evidence for Weak Bound Oxygen on Ceria Film, ”J. Phys. Chem., 100 (1996) 17862.
    [66] H. Cordatos, T. Bunluesin, J. M. Vohs, and R. J. Gorte., “Effect of Ceria Structure on Oxygen Migrtaion for Rh/Ceria Catalysts, ”J. Phys. Chem., 100 (1996) 785.
    [67] K. Tanaka, K. Miyahara and I. Toyoshima, “Adsorption of CO2 on TiO2 and Pt/TiO2 Studied by X-Ray Photoelectron-Spectroscopy and Auger-Electron Spectroscopy, ”J. Phys. Chem. 88 (1984) 3504.
    [68] L. Bonneviot and G.L. Haller, “Electron-Paramagnetic-RES Characterization of Ti3+ Ions at the Metal Support Interface in Pt/TiO2 Catalysts, ”J. Catal. 113 (1988) 96.
    [69] D.J. Dwyer, J.L. Robbins, S.D. Cameron, N. Dudash and J. Hardenbergh in: Strong Metal Support Interactions,ACS Symposium Series 298 (Am. Chem. Soc., Washington, 1986)p.21
    [70] Abi-Aad, E., Bechara, R., Grimblot, J., and AboukaÏs, A., “Preparation and Characterization of CeO2 under an Oxidizing Atmosphere. Thermal Analysis, XPS, and EPR Study, ” Chem. Mater. 5, (1993) 793
    [71] Abi-Aad, E., Bennani, A., Bonnelle, J.-P., and AboukaÏs, A., “Transition-Metal Ion Dimers Formed in CeO2:An EPR Study,” J. Chem. Soc. Faraday Trans. 91 (1995) 99.
    [72] Mogensen, M., Lindegaard, T., Hansen, U. R., and Mogensen, G., “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2, ” J.Electrochem. Soc. 141 (1994) 2122.
    [73] Pai Verneker, V. R., Petelin, A. N., Crowne, F. J., and Nagle, D. C., “Color-Center-Induced Band-Gap Shift in Yttria-Stabilized-Zirconia,” Phys. Rev. B. 40 (1989) 8555.
    [74] Azzoni, C. B., and Paleari, A., “Paramagnetic-Defect Kinetics in Yttria-Stabilized-Zirconia, ” Solid State Ionics 44 (1991) 267.
    [75] 竇維平,”利用螢石型導氧離子氧化物擔體提昇氧化銅觸媒的還原性及催化活性之研究”,博士論文,清華大學化工所,民國八十四年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE