簡易檢索 / 詳目顯示

研究生: 蘇訓右
Hsun-Yu Su
論文名稱: 水性聚胺酯樹脂/聚矽酸奈米複合材料之製備與性質之研究
指導教授: 馬振基
Chen-Chi Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 157
中文關鍵詞: 水性聚胺酯樹脂聚矽酸奈米顆粒奈米複合材料
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在合成水性PU ( Waterborne Polyurethane ),除具有一般水性PU樹脂的基本結構外,並利用3-aminopropyl-triethoxysilane (APTS)使得分子鏈尾端帶有silane的官能基。由於其尾端的silane會與聚矽酸 ( Polysilicic acid nanoparticle, PN ) 表面的OH進行溶膠-凝膠反應,產生共價鍵結,藉此可達到均勻分散的目的;另外利用Phenyltrimethoxysilane(PTMS)及3-(trimethoxysilyl) propyl ester (TMPE)將PN奈米顆粒改質後,藉由混摻的方法將無機奈米顆粒均勻分散在水性PU中,製備三種水性PU/聚矽酸奈米複合材料並探討材料的結構與熱、機械、氣體滲透率的性質。
    在結構鑑定方面,利用動態光散射法得知PN奈米顆粒的分佈情形,粒徑分佈從3~25 nm,平均粒徑為9 nm。從FT-IR圖譜,除了可得知P N表面帶有OH官能基外,PTMS及TMPE亦將PN表面做適當的改質。由GPC的結果得知,本研究合成的水性PU其數目平均分子量為10,000∼15,000,Polydispersity Index (PDI)為1.6~2.0。
    在材料的結構分析方面,從SEM的照片觀察,可發現PN的含量在20 wt.%以下時,以50 nm的大小均勻分散在高分子基材中,藉由Si-mapping技術可知PN在高分子基材的分佈情形。當PN含量超過20 wt.%時,可明顯看到無機物聚集,發生相分離的現象;對於PTMS-PN及TMPE-PN的混摻系統,可發現當添加量達30 wt.%時,奈米顆粒有明顯的團聚現象。由FT-IR圖譜的計算,可知PN與水性PU彼此之間的氫鍵作用力,在PN含量為10 wt.%時,氫鍵羰基的比例最高;在PTMS-PN及TMPE-PN的系統中,當添加量在5 wt.%之後,氫鍵羰基的比例變化趨於和緩。由外觀型態以及UV-Vis結果可知,經過PTMS及TMPE改質後的PN奈米顆粒,除了材料的透明性增加之外,也有助於PN奈米顆粒的添加量。利用DSC及XRD圖譜可知無機物的添加對於硬鏈段的結晶有較大的影響,結晶型態包括α-form、γ-form及三斜晶系。針對偏矽酸鈉而言,經溶膠-凝膠反應後,矽原子形成矽氧烷鍵單取代時被標定為Q1,二取代為Q2,三取代為Q3,四取代為Q4;對於APTS而言,經溶膠-凝膠反應後,矽原子形成矽氧烷鍵單取代時被標定為T1,二取代為T2,三取代為T3,由29Si固態NMR可知純水性PU的T1、T2、T3結構,有機矽形成一個Si-O-Si的鍵結(T1)比例較高,隨著無機物的含量增加,T的結構逐漸減弱,無機矽的鍵結數目,即Q的結構型態逐漸明顯,PN、TMPE-PN的複合材料,其無機矽形成三個Si-O-Si鍵結(Q3)比例大於Q4,PTMS-PN則是Q4大於Q3。
    在整體的材料性質方面,由TGA的分析結果可知, 其熱裂解溫度隨著PN含量的增加而遞增,從269.2℃上升到318.5℃,提升約50℃,對於PTMS-PN奈米複合材料,從269.2℃上升到324.2℃,增加約55℃,TMPE-PN則從269.2℃上升到332.4℃,提升約60℃,顯示TMPE-PN複合材料在熱性質方面較穩定。在拉伸性質方面,PN複合材料的最大應力從0.09 MPa提升至3.40 MPa,增加38倍,楊氏模數增加11倍;PTMS-PN者的最大應力從0.09 MPa上升至3.65 MPa,增加約40倍,楊氏模數提升37.82 MPa,增加15倍;TMPE-PN複合材料最大應力增加15倍,楊氏模數提高15.17 MPa,增加7倍。不論是最大應力或是楊氏模數,PTMS-PN的效果最好,PN次之,TMPE-PN較差。氧氣滲透率方面,複合材料隨著PN含量增加,從4.56 X 10-11上升至9.24 X 10-11,提升2倍;當PTMS-PN添加量為10wt.%時,複合材料有最好的氧氣滲透效果,從4.56 X 10-11上升至10.4 X 10-11,增加2倍;當TMPE-PN添加量為20wt.%時,氧氣滲透率從4.56 X 10-11提升至8.84 X10-11,增加2倍。動態機械性質方面,在-25℃下,當PN添加量為10wt%時,複合材料的Storage Modulus有最佳值,從0.76 X 10-8 MPa提升為9.83 X 10-8 MPa,增加12倍;PTMS-PN含量為5wt.%時有最佳值,從0.76 X 10-8 MPa提升為13.3 X 10-8 MPa,增加17倍,當TMPE-PN含量為10wt.%時,複合材料的儲存模數從0.76 X 10-8 MPa上升至8.97 X 10-8 MPa,提升12倍。由此可知PTMS-PN奈米複合材料具有較好的動態機械性質。


    Three novel nanocomposites including Polysilicic acid nanoparticle (PN)、PTMS-PN 、TMPE-PN / Waterborne Polyurethane (WPU) have been prepared. Two methods were used to well disperse inorganic nanoparticles in the polymer matrix:the sol-gel process and blending process. The OH functional groups attatched on surface of PN nanoparticles would react with end-capped silane on WPU via sol-gel process. These PN nanoparticles were modified by Phenyltrimethoxysilane (PTMS) and 3-(trimethoxysilyl) propyl ester (TMPE). The nanostructure, thermal, mechanical, gas permeation properties of the three nanocomposites were investigated.
    Size distribution of PN nanoparticles was measured by dynamic light scattering method ranging from 3 to 25 nm. The average size of PN nanoparticles was 9 nm. From GPC result, it was found that the number molecular weight of WPU was 10,000~15,000 and Polydispersity was 1.6~2.0.
    The morphology study results showed that PN nanoparticles were well dispersed in waterborne polyurethane within a nano-scale (50 nm). When PN content was over 20 wt%, phase separation may occur. Si-mapping technique was used to observe the dispersion of PN in the polymer matrix. When PTMS-PN and TMPE-PN contents went up to 30 wt.%, phase separation may take place. FT-IR results showed that the fraction of hydrogen bonded carbonyl group reached the maximum when PN content was 10 wt.%. The PTMS-PN and TMPE-PN nanocomposites showed more transparency which was further proved by UV-visible measurement. The crystalline structure of hard segment of waterborne polyurethane was greatly influenced by nanoparticles from DSC spectrum. The XRD results revealed that α-form, γ-form, or triclinic crystallization could be found in waterborne polyurethane matrix at different inorganic contents.
    TGA results showed that introducing inorganic fillers could increase the thermal stability of WPU. For example, the 10% weight loss of nanocomposite increased from 269.2℃ to 318.5℃ (increased by 50℃) when the PN content was 20 wt%; in the PTMS-PN system, the degradation temperatures were increased from 269.2℃ to 324.2℃ (increased by 55℃); in TMPE-PN system, the degradation temperatures were enhanced from 269.2℃ to 332.4℃ (increased by 63℃). The TMPE-PN system exhibited the best thermal stability.
    The tensile stress and Young’s modulus of nanocomposite increased with the increasing of PN content. Results showed that maximum tensile stress of nanocomposite increased from 0.09 MPa to 3.40 MPa (increased by 37 times),and Young’s modulus raised 27.01 MPa (increased by 11 times). In the PTMS-PN system, the maximum tensile stress of nanocomposite increased from 0.09 MPa to 3.65 MPa (increased by 40 times),and Young’s modulus raised 37.82 MPa (increased by 15 times). In the TMPE-PN system, the maximum tensile stress of nanocomposite raised 1.25 MPa (increased by 15 times), and Young’s modulus raised 15.17 MPa (increased by 7 times). PTMS-PN nanocomposites displayed the best tensile properties.
    Oxygen permeability of PN nanocomposites increased from 4.56 X 10-11 to 9.24 X 10-11 ( cc •(STP) •cm) / (cm2•sec•cmHg) (increased 103%). In the PTMS-PN system, the oxygen permeability of nanocomposite increased from 4.56 X 10-11 to 10.4 X 10-11 ( cc •(STP) •cm) / (cm2•sec•cmHg) (increased 128%) when the PTMS-PN content was 10wt%. In the TMPE-PN system, the oxygen permeability of nanocomposite increased from 4.56 X 10-11 to 8.84 X 10-11( cc •(STP) •cm) / (cm2•sec•cmHg) (increased 94 %).
    The dynamic mechanical properties of nanocomposite were measured by a Dynamic Mechanical Analysers (DMA). Results revealed that the storage modulus of PN nanocomposite was 9.83 X 108 Pa (increased 12 times) when the PN content was 10wt% at -25℃. In PTMS-PN system, the storage modulus of nanocomposite was increased from 0.76 X 108 Pa to 13.3 X 108 Pa (increased 17 times) when the PTMS-PN content was 5wt%. In TMPE-PNsystem, the storage modulus of nanocomposite was from 0.76 X 108 Pa to 8.97 X 108 Pa (increased 12 times). From the results it could be found that PTMS-PN nanocomposite possessed better dynamic mechanical properties than others.

    目錄 摘要………………………………………………………………..……..Ι ABSTRACT……………………………………………………………ΙⅤ 謝誌………………………………………………………………..…ⅤΙΙΙ 目錄……………………………………………………………..……….Χ 圖目錄…………………………………………………………...........ΧⅤ 表目錄…………………………………………………………….......ΧΧΙ 第一章、緒論……………………………………………………………1 1-1前言……………………………………………………………1 1-2高分子奈米複合材料……..…………………………………..1 1-3分離膜………………………………………………………....3 第二章、文獻回顧與理論基礎………………………………………….6 2-1 聚胺基甲酸酯(PU)的發展與性質…………………………...6 2-1-1聚胺基甲酸酯的發展歷程………………………….....6 2-1-2 聚胺基甲酸酯的反應…………………………………9 2-1-3 聚胺基甲酸酯的結構與性質………………………..11 2-2 水性聚胺基甲酸酯的發展與製備………………………….14 2-2-1 水性PU的發展歷程…………………………….…..14 2-2-2 水性PU的優點與性質…………………….………..15 2-2-3 水性PU的製備……………………………………..16 2-3 溶膠-凝膠法 (Sol-Gel method).............................................23 2-3-1 溶膠-凝膠法的基本原理……………………………23 2-3-2 影響溶膠-凝膠法的參數……………………………25 2-4 聚矽酸顆粒的發展歷史與製程…………………………….27 2-4-1聚矽酸奈米顆粒的製備……………………………...28 2-4-2 PN法在有機-無機混成材料上的應用………………29 2-5 氣體滲透性質……………………………………………….31 2-5-1 氣體滲透的研究與發展歷史………………………..31 2-5-2 氣體滲透的原理……………………………………..33 2-5-3 影響氣體滲透之因素………………………………..35 2-6 基團貢獻法(Group Contribution Method).............................36 2-6-1 偶極距與分子極性…………………………………..36 2-6-2 基團貢獻法的應用與算法…………………………..37 2-7 高分子中的氫鍵…………………………………………….42 2-8 高分子的結晶……………………………………………….44 第三章、研究目的與內容………………………………………………49 3-1 研究目的…………………………………………………….49 3-2 研究內容…………………………………………………….51 第四章、實驗方法………………………………………………………56 4-1 實驗藥品…………………………………………………….56 4-2 實驗儀器…………………………………………………….59 4-3 實驗流程…………………………………………………….61 4-4 實驗步驟…………………………………………………….63 4-4-1 PN奈米顆粒的合成與改質………………………….63 4-4-2水性PU的製備………………………………………64 4-4-3水性PU / PN奈米複合材料的製備與成膜………….64 4-5 測試方法…………………………………………………….64 4-5-1 PN奈米顆粒的粒徑測試…………………………….64 4-5-2高分子合成物的鑑定………………………………...65 4-5-3熱性質的測試………………………………………...66 4-5-4型態的測試…………………………………………...67 4-5-5氣體透過性質測試…………………………………...67 4-5-6 光學性質之測定……………………………………..69 4-5-7 抗拉強度測定………………………………………..69 4-5-8 動態機械測試………………………………………..70 第五章、結果與討論……………………………………………………71 5-1 鑑定部分…………………………………………………….71 5-1-1 PN奈米顆粒的粒徑分析…………………………….71 5-1-2 PN顆粒改質後之結構分析………………………….72 5-1-3水性PU預聚物的反應時間…………………………77 5-1-4水性PU的結構鑑定………………………………….80 5-1-5水性PU分子量的鑑定……………………………….82 5-2 水性PU/聚矽酸奈米複合材料的相容性…………………..85 5-2-1掃瞄式電子顯微鏡的觀察…………………………...85 5-2-2固態1H NMR圖譜分析……………………………..92 5-2-3氫鍵作用力的分析…………………………………...96 5-2-4外觀分析…………………………………………….103 5-2-5 UV-Vis的光學分析…………………………………105 5-3 奈米複合材料的結晶行為與型態變化…………………...110 5-3-1熱性質分析………………………………………….110 5-3-2 X-Ray繞射分析……………………………………..116 5-3-3固態29Si核磁共振圖譜…………………………….120 5-4 奈米複合材料的性質測試………………………………...126 5-4-1熱性質測試………………………………………….126 5-4-2抗拉強度測定…………………………………….....131 5-4-3氣體滲透率測試………………………………….....135 5-4-4動態機械性質測試………………………………….140 第六章、結論………………………………………………………….144 第七章、參考文獻……………………………………………………..149 圖目錄 Figure 2-1異氰酸酯基的反應………………………………………….10 Figure 2-2異氰酸酯基相關反應……………………………………….11 Figure 2-3 PU軟鍵段與硬鍵段的結構示意圖………………………...12 Figure 2-4 PU軟硬鏈段物理交聯示意圖 ……………………………..13 Figure 2-5各類的離子型乳化劑 ………………….…………………..18 Figure 2-6溶液法製備水性PU的流程………………………………..19 Figure 2-7預聚物混合法製備水性PU之過程………………………..21 Figure 2-8 Ketimine和Ketazine的水解反應………………………….23 Figure 2-9溶膠-凝膠法的水解縮合反應………………………………25 Figure 2-10溶解-擴散模式……………………………………………..33 Figure 4-1 The Concise Flow Chart on this Research…………………..61 Figure 4-2 The synthesis mechanism of WPU / PN nanocomposite……62 Figure 4-3 The Apparatus for Gas Permeability Measurement…………69 Figure 5-1 The Size Distribution of PN nanoparticles at steady state…..71 Figure 5-2 FT-IR Spectra of PN nanoparticles………………………….74 Figure 5-3 FT-IR Spectra of PTMS-PN…………………………………75 Figure 5-4 FT-IR Spectra of TMPE-PN………………………………...76 Figure 5-5 The FT-IR spectra of IPDI reacted with PCL at different reaction times……………………………………………………………79 Figure 5-6 The FT-IR spectrum of waterborne polyurethane…………...81 Figure 5-7 The GPC Spectrum of waterborne polyurethane……………82 Figure 5-8 The SEM microphotograph of waterborne polyurethane (x50,000)………………………………………………………………...85 Figure 5-9 SEM microphotograph of WPU with PN (5wt.%) (x20,000).87 Figure 5-10 SEM microphotograph of waterborne polyurethane with PN particles ( 25wt.%) (x40,000)…………………………………………...88 Figure 5-11 SEM microphotograph of waterborne polyurethane with PTMS-PN (x40,000) ……………………………………………………88 Figure 5-12 Si mapping photograph of WPU with PTMS-PN………….89 Figure 5-13 The elemental analysis of waterborne polyurethane with PTMS-PN……………………………………………………………….89 Figure 5-14 SEM microphotograph of waterborne polyurethane with PTMS-PN ( 30wt.%) (x70,000)…………………………………………90 Figure 5-15 SEM microphotograph of waterborne polyurethane with TMPE-PN (x50,000)……………………………………………………90 Figure 5-16 Si mapping photograph of waterborne polyurethane with TMPE-PN……………………………………………………………….91 Figure 5-17 Elemental analysis of waterborne polyurethane with TMPE-PN……………………………………………………………….91 Figure 5-18 SEM microphotograph of waterborne polyurethane with TMPE-PN ( 30wt.%) (x50,000)………………………………………...92 Figure 5-19 The structure of waterborne polyurethane…………………92 Figure 5-20 1H-NMR spectra of WPU nanocomposites with different PN contents………………………………………………………………….93 Figure 5-21 1H-NMR spectra of WPU nanocomposites with different...93 Figure 5-22 1H-NMR spectra of WPU nanocomposites with different TMPE-PN contents……………………………………………………...94 Figure 5-23 FT-IR analysis of carbonyl groups on WPU with different PN contents nanocomposites………………………………………………..97 Figure 5-24 The fraction of hydrogen bonded carbonyl for WPU with different PN contents nanocomposites……………………………….....98 Figure 5-25 FT-IR analysis of carbonyl groups on WPU with different PTMS-PN contents nanocomposites……………………………………98 Figure 5-26 The fraction of hydrogen bonded carbonyl for WPU with different PTMS-PN contents nanocomposites…………………………..99 Figure 5-27 FT-IR analysis of carbonyl groups on WPU with different TMPE-PN contents nanocomposites…………………………………..100 Figure 5-28 The fraction of hydrogen bonded carbonyl for WPU with different TMPE-PN contents nanocomposites………………………...101 Figure 5-29 Transparency of WPU nanocomposites with PN 20wt.% and 25 wt.% ..……………………………………………………...…….….104 Figure 5-30 Transparency of WPU nanocomposites with PTMS-PN 25 wt.% and 30 wt.%...................................................................................104 Figure 5-31 Transparency of WPU nanocomposites with TMPE-PN 25 wt.% and 30 wt.%...................................................................................104 Figure 5-32 UV spectrum of WPU nanocomposites with different PN contents ………………………………………………………………...106 Figure 5-33 UV spectrum of WPU nanocomposites with different PTMS-PN contents…………………………………………………….107 Figure 5-34 UV spectrum of WPU nanocomposites with different TMPE-PN contents…………………………………………………….107 Figure 5-35 UV-Vis absorbance of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………………………..108 Figure 5-36 DSC spectra of WPU with different PN contents……..….112 Figure 5-37 DSC spectra of WPU nanocomposites with low PN contents………………………………………………………………...113 Figure 5-38 DSC spectra of WPU nanocomposites with different PTMS-PN contents …………………………………………………....113 Figure 5-39 DSC spectra of WPU nanocomposites with different…….114 Figure 5-40 XRD curves of WPU nanocomposites with low PN contents ………………………………………………………………..117 Figure 5-41 XRD curves of WPU nanocomposites with different PN...117 Figure 5-42 XRD curves of WPU nanocomposites with different PTMS-PN contents ……………………………………………………118 Figure 5-43 XRD curves of WPU nanocomposites with different…….118 Figure 5-44 29Si-NMR spectra of PN nanoparticles…………….…...122 Figure 5-45 29Si-NMR spectra of WPU nanocomposites with different PN……………………………………………………………………...122 Figure 5-46 29Si-NMR spectra of WPU nanocomposites with different PTMS-PN contents ……………………………………………………123 Figure 5-47 29Si-NMR spectra of WPU nanocomposites with different………………………………………………………………...123 Figure 5-48 Thermal degradation curve of WPU nanocomposites with different PN contents ………………………………………………….125 Figure 5-49 Thermal degradation curve of WPU nanocomposites with different PTMS-PN contents ………………………………………….126 Figure 5-50 Thermal degradation curve of WPU nanocomposites with different TMPE-PN contents ………………………………………….127 Figure 5-51 Thermal degradation temperature of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………….128 Figure 5-52 Max. Stress of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents………………………………………131 Figure 5-53 Young’s Modulus of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………………………..133 Figure 5-54 Oxygen permeability coefficient of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents …………………137 Figure 5-55 Oxygen diffusivity coefficient of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ……………………….137 Figure 5-56 Oxygen solubility coefficient of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………………138 Figure 5-57 Storage Modulus of WPU nanocomposites with different PN contents………………………………………………………………...140 Figure 5-58 Storage Modulus of WPU nanocomposites with different PTMS-PN contents…………………………………………………….140 Figure 5-59 Storage Modulus of WPU nanocomposites with different TMPE-PN contents ……………………………………………………141 表目錄 Table 1-1高分子複合材料分類………………………………………….2 Table 1-2主要膜分離過程的趨動力…………………………………….4 Table 2-1聚胺基甲酸酯研究的重要歷程 ………………………………8 Table 2-2中心金屬離子的配位數與不飽和度…………………..……26 Table 2-1 Group contribution of the molar volume of organic liquid at room temperature (cm3/mol)……………………………………….……39 Table 2-2 Group contribution to the molar refraction (λ=589nm) ……...40 Table 2-3 Group contributions to the molar dielectric polarization in isotropic polymers (cm3/mol)…………………………………………...41 Table 4-1 Characteristic absorption peaks of FT-IR spectra of PN / Waterborne polyurethane nanocomposite……………………………….65 Table 5-1 The Absorption Intensity of NCO to NH at different reaction times……………………………………………………………………..78 Table 5-2 The dipole moment of WPU by Group contribution method..83 Table 5-3 The dipole moment of PN、PTMS-PN、TMPE-PN nanoparticles by Group contribution method………………………………………….84 Table 5-4 The curve fitting results from the FT-IR spectra of WPU with different PN nanocomposites……………………………………………98 Table 5-5 The curve fitting results from the FT-IR spectra of WPU with different PTMS-PN nanocomposites…………………………………..100 Table 5-6 The curve fitting results from the FT-IR spectra of WPU with different TMPE-PN nanocomposites…………………………………..101 Table 5-7 Max. absorption wavelength and intensity of WPU nanocomposites with different PN contents…………………………...106 Table 5-8 Max. absorption wavelength and intensity of WPU nanocomposites with different PTMS-PN contents…………………...107 Table 5-9 Max. absorption wavelength and intensity of WPU nanocomposites with different TMPE-PN contents…………………...108 Table 5-10 Glass transition、melting temperature and melting peak area of WPU nanocomposites with different TMPE-PN contents……………..114 Table 5-11 Glass transition、melting temperature and melting peak area of WPU nanocomposites with low PN contents………………………….115 Table 5-12 Glass transition、melting temperature and melting peak area of WPU nanocomposites with different PTMS-PN contents……………..115 Table 5-13 Glass transition、melting temperature and melting peak area of WPU nanocomposites with different TMPE-PN contents……………..115 Table 5-14 Thermal degradation temperature of WPU nanocomposites with different PN contents……………………………………………..127 Table 5-15 Thermal degradation temperature of WPU nanocomposites with different PTMS-PN contents………………………………..……128 Table 5-16 Thermal degradation temperature of WPU nanocomposites with different TMPE-PN contents……………………………………..129 Table 5-17 Mechanical properties of WPU nanocomposites with different PN contents…………………………………………………………….133 Table 5-18 Mechanical properties of WPU nanocomposites with different PTMS-PN contents…………………………………………………….133 Table 5-19 Mechanical properties of WPU nanocomposites with different TMPE-PN contents.…………………………………………………....133 Table 5-20 Oxygen permeation properties of WPU nanocomposites with different PN contents …………………………………………………..137 Table 5-21 Oxygen permeation properties of WPU nanocomposites with different PTMS-PN contents…………………………………………..137 Table 5-22 Oxygen permeation properties of WPU nanocomposites with different TMPE-PN contents…………………………………………..137 Table 5-23 Storage Modulus of WPU nanocomposites with different PN contents at -25℃、0℃、25℃…………………………………………142 Table 5-24 Storage Modulus of WPU nanocomposites with different PTMS-PN contents at -25℃、0℃、25℃……………………………..143 Table 5-25 Storage Modulus of WPU nanocomposites with different TMPE-PN contents at -25℃、0℃、25℃ ……………………………143

    1. 張立德 編著,張勁燕 校訂,“奈米大浪潮 奈米材料”,五南書局,P.5,2002
    2. A. Moet Akelah ,” Synthesis of Organophilic Polymer-clay nanocomposites,” J. App.Polym. Sci: Applied Polymer Symposium, 55, 153-172, 1994
    3. 林景正、賴宏仁,”奈米材料技術與發展趨勢”,工業材料,153,pp95~96,1999
    4. 郭文法,“納米複合材料加工應用”,工業材料,125
    5. Peter C. LeBaron,Zhen Wang, Thomas J. Pinnavaia,”Polymer-layered silicate nanocomposites:an overview” Applied Clay Science 15,pp.11-29,1999
    6. A.Kioul, L.Mascia,”Compatibility of polyimide-silicate creamers induced by alkoxysilane silane coupling agents” Journal of Non-crystalline solid 175,pp.169~186,1994
    7. “酚醛樹脂/二氧化矽奈米混成防火複合材料增韌製程及其特性之研究”,戴炘,國立清華大學碩士論文,2003
    8. 鄭領英、王學松 編著,”科技大浪潮—膜的高科技應用”,五南書局,2003
    9. W. S. Winston Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992
    10. J. S. McBride, T. A. Massaro, and S. L. Cooper, “Diffusion of gases through polyurethane block polymers”, J. Appl. Polym. Sci.,23,201,1979
    11. P. M. Knight and D. J. Lyman, “Gas permeability of various block copolyether-urethanes”, J. Membr. Sci., 17,pp.245,1984
    12. Shih-Hsiung Chen, Kuang-Chang Yu, Shih-Liang Houng, Juin-Yih Lai, “Gas transport properties of HTPB based polyurethane/cosalen membrane”, J. Membr. Sci. 173, pp.99-106, 2000
    13. 蔡宗燕,化工資訊,二月,28-42,1998
    14. A. Wurtz, C. R. Hebd. Seance Academic SCI , 27, 241, 1848
    15. Chem. Eng. News 39 , 11, 62, 1961
    16. Szycher, Handbook of Polyurethane, pp.1-4
    17. 岩田敬治,”聚尿脂樹脂PU原理與實用”, 復漢出版社, 1-3
    18. Szycher, Handbook of Polyurethane, pp.4-6∼4-8
    19. L. G. Wade, Jr. Organic Chemistry , A Simon and Schuster Company Englewood Cliffs,New Jersy(1995)
    20. J. H. Saunders and K. C. Frisch. Polyurethane; Chemistry and Technology, PartsⅠ and Ⅱ, Interscience, New York (1962)
    21. P. Wright and A. P. C. Cumming, Solid Polyurethane Elastomers, Maclaren and Sons, London (1969).
    22. C. Hepburn, Polyurethane elastomers, Applied Science Publishers LTD (1982).
    23. Day Chyuan. Lee,; Thomas A.Speckhard,; Andrew D Sorensen,.; Stuart L.Cooper, “Methods for determining the molecular weight and solution properties of polyurethane block copolymers” Macromolecules, 1986, 19(9), 2383
    24. D. Diterich, Angew. Makromol. Chem., 98, 133, 1981
    25. Szycher, Handbook of Polyurethane, Chapter 14
    26. 張信弘, “離子基對水性PU樹脂結構影響之研究”, 文化大學碩士論文85年
    27. J. B. Nichols, J. D.Christen, L. D.Booth, W. D. Clarke, “High performance appliance insulation using MDI-based urethane chemistry” J. Cell. Plast., 1985, 21(4), 277
    28. 黃長澤,“水性PU合成技術及在接著劑之應用 (中)”,81,80-86,1999
    29. Y. J. Huang, W. C. Jiang,“Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. 1: Miscibility and cured sample morphology”Polymer, 39, 6631-6641, 1998
    30. Y. J. Huang, C. J. Chu,“Effects of chemical structure of polyurethane-based low-profile additives on the miscibility, curing behavior, volume shrinkage, glass transition temperatures, and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. I: miscibility, curing behavior, and volume shrinkage”, J. Appl. Polym. Sci.78(3), 543-557,2000
    31. D. W. V. Krevelen, “Properties of polymer:their correlation with chemical structure;their numerical estimation and prediction from additive group contributions”, pp.78、293、32, 3rd Completely Revised Ed., Elsevier, London, 1997
    32. C. J. Brinker and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., p. 2-8, 1990.
    33. J. Wen, G. L. Wilkes, “Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach”, Chem. Mater., 8, 1667, 1996
    34. G. Schottner, “Hybrid Sol-Gel Derived Polymer:Applications of Multifunctional Materials”, Chem. Mater., 13, 3422, 2001
    35. 徐國財, 張立德, “納米複合材料”, 北京化學工業出版社, 2001
    36. F. Mylius, and E. Groschuff, Ber.,39, 116-25, 1906
    37. R. K. Iler and P. S. Pinkney, Industrial and Engineering Chemistry, 39,1379, 1947
    38. Y. Abe and T. Misono, J. Polym. Sci. Polym. Lett. Ed., 20, 205, 1982
    39. T. Gunji, Y. Nagao, T. Misono, and Y. Abe. J. Polym. Sci. Polym. Chem. Ed., 30, 1779,1992
    40. B.M. Novak, Adv. Mater., 5, 422, 1993
    41. B. M. Novak and M. W. Ellsworth, Materials Sciences and Engineering, A162, 257,1993
    42. J. Habsuda, G. P. Simon, Y. B. Cheng, D. G. Hewitt, H. Toh, D. R. Diggins,“Chemical structure of composites derived from poly(silicic acid) and 2-hydroxyethylmethacrylate” J. Polym. Sci. Part A:Polym. Chem., vol.39, 1342-1352, 2001
    43. V. Stannett, “The transport of gases in synthetic polymeric membranes-an historic perspective”, J. Membr. Sci. 3, 97, 1987
    44. 張良祥, “含胺基之聚胺基甲酸酯與聚尿素-胺基甲酸酯的合成、鑑定及氣體吸附與透過性質的研究”, 成功大學博士論文86年
    45. S. A. Stern, W. P. Walawender, Analysis of membranes separation parameters, Separation Sci., 4(2), 129, 1969
    46. L. Jia, J. Xu, A single method for prediction of gas permeability of polymers from their molecular structure, Polymer J., 23, 417, 1991
    47. M. S. Suwandi, S. A. Stern, Transport of heavy organic vapors through silicone rubber, J. Polym. Sci. Phys. Ed., 11 ,663, 1973
    48. K. D. Ziegel, Gas transport in segmented block copolymer, J. Macromol. Sci. Phys., B5(1), 11, 1971
    49. H. Xiao, Z. H. Ping, J. W. Xie, T. Y. Yu, Permeation of CO2 through polyurethane, J. Appl. Polym. Sci., 40 ,1131, 1990
    50. M. M. Coleman, C. J. Serman, P. C. Painter, ”Effect of crosslinking on the degree of molecular level mixing in an polymer blend”, Macromolecules, 20, 266~232, 1987
    51. A. M. Lichkus, P. C. Painter, M. M. Coleman, ”Hydrogen bonding in polymer blends”, Macromolecules, 21, 2636~2641, 1988
    52. H.I. Kim, E. M. Pearce, T. K. Kwei, “Misibility control by hydrogen bonding in polymer blends and interpenetrating networks”, Macromolecules, 22, 3374~3380, 1989
    53. T. Zhang, K. Takegoshi and K. Hikichi, “Poly(vinyl phenol)/poly(methyl methacrylate) Blends: Hydrogen Bonding, Miscibility, and Blending Effect on Molecular Motions as Studies By 13C CP/MAS NMR”Macromolecules, 1991, v.24, 5776-5762.
    54. M. M. Coleman; Y. Xu and P. C. Painter, “Compositional Hetergeneities in Hydrogen-Bonded Polymer Blends: Infrared Spectroscopic Results”Macromolecules, 1994, v.27, 127-134.
    55. L. A. Utracki, “Polymer Alloys and Blends-thermodynamics and rheology”Hanser Publishers, 1989, Munich, Vienna, New York.
    56. 蔡宗燕, “奈米黏土-高分子複合材料之發展與應用” , 材料奈米技術專刊, 2001
    57. R. E. Kesting, A. K. Fritzsche, “Polymeric gas separation membranes”, John wiley & sons, Inc.
    58. M. M. Coleman, J. F. Gref, P. C. Painter, Specific Interactions and the Miscibility of polymer blends, Technomic publishing, Inc. Lancaster, PA, 1991
    59. H. D. Wu, C. C. M. Ma, F. C. Chang, Macromolecules, 32, 9, 3097, 1999
    60. Harold Schonhorn, Macromolecules,1,145,1968
    61. T. K. Kwei, H. Schonhorn, and H. L. Frisch, J. Appl. Phys.,38,2512,1967
    62. Souheng Wu., Polymer Interface and Adhesion,M. Dekker, New York,p323.
    63. R.C.R. Nunes, R.A. Pereira, J.L.C. Fonseca, M.R. Pereira, Polymer Testing 20, 707-712, 2001
    64. B.D. Dickie, Thermochimica Acta, 304/305, 347-352, 1997
    65. Fernanda M.B. Coutinho, Marcia C. Delpech, Thais L. Alves, Antonio A. Ferreira, “Degradation profiles of cast films of polyurethane and poly(urethane-urea) aqueous disersions based on hybroxytherminated polybutadiene and different diisocyanates,” Polymer Degradation and Stability, 81, 19-27, 2003
    66. L.K. Saw, B.W. Brooks, K.J. Carpenter, and D.V. Keight, “Different dispersion regions during the phase inversion of an ionomeric polymer-water system,” Journal of Colloid and Interface Science, 257, 163-172, 2003
    67. Byung Kyu Kim, Jang Won Seo, Han Mo Jeong, “Morphology and properties of waterborne polyurethane/clay nanocomposites,” European Polymer Journal, 39, 85-91, 2003
    68. Shi Guo Chen, Ji Wen Hu, Ming Qiu Zhang, Ming Wei Li, Min Zhi Rong, “Gas sensitivity of carbon black/waterborne polyurethane composites,” Carbon, 42, 645-651, 2004
    69. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, charactization, thermal properties and flame retardance of novel phenolic resin / silica nanocomposites,” Polymer Degradation and Stability, 83, 207-214, 2004
    70. Ying-Ling Liu, Wen-Lung Wei, Keh-Ying Hsu, Wen-Hsuan Ho, “Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis,” Thermochimica Acta, 412, 139-147, 2004
    71. Feng-Xian Qiu, Yu-Ming Zhou, Ju-Zheng Liu, “The synthesis and Characteristic study of 6FDA-6FHP-NLO polyimide/SiO2 nanohybrid materials,” European Polymer Journal, 40 713-720, 2004
    72. Y.G. Hsu, L.F. Chang, C.P. Wang, “Organic-inorganic hybrid materials based on the incorporation of nanoparticles of polysilicic acid (nPSA) with organic polymers 2. Curing of unsaturated poly(amide-ester) resin in the presence of nPSA,” Materials Science and Engineering A, 367, 205-217, 2004
    73. Chris J. Cornelius, Eva Marand, “Hybrid Silica-polyimide composite membranes: gas transport properties,” Journal of Membrane Science, 202, 97-118, 2002
    74. Zhi Fen Wang, Bo Wang, Yu Run Yang, Chun Pu Hu, “Correlations between gas permeation and free-volume hole properties of polyurethane membranes,” European Polymer Journal, 39, 2345-2349, 2003
    75. Ho Bum Park, Jang Ki Kim, Sang Yong Nam, Young Moo Lee, “Imide-siloxane block copolymer / Silica hybrid membranes: preparation, characterization and gas separation properties,” Journal of Membrane Science, 220, 59-73, 2003
    76. Qiuju Wu, Xiaohui Liu, Lars A. Berglund, “FT-IR Spectroscopic study of hydrogen bonding in PA6 / clay nanocomposites,” Polymer, 43, 2445-2449, 2002
    77. Robin L. McKiernan, Amy M. Heintz, ShawL. Hsu, Edward D. T. Atkins, Jacques Penelle, and Samuel P. Gido, “Influence of Hydrogen Bonding on the Crystallization Behavior of Semicrystalline Polyurethanes,” Macromolecules, 35, 6970-6974, 2002
    78. Miwa Murakami, Hiroyuki Ishida, Masayuki Miyazaki, Hironori Kaji, and Fumitaka Horii, “Studies of the Phase Transitions, Structure, and Dynamics for Main-Chain Thermotropic Liquid Crystalline Polyethers and Polyurethanes with the Same Mesogen and Spacer Units,” Macromolecules, 36, 4160-41674, 2003
    79. Mattia Bassi, Claudio Tonelli, and Antonella Di Meo, “Glass Transition Behavior of a Microphase Segregated Polyurethane Based on PFPE and IPDI. A Calorimetric Study”, Macromolecules, 36, 8015-8023, 2003
    80. R. W. Seymour and S. L. Cooper, Macromolecules, 6,48,1973
    81. A. Saiani, C. Rochas, G. Eeckhaut, W. A. Daunch, J.W. Leenslag, and J. S. Higgins, “Origin of Multiple Endotherms in a High Block Content Polyurethane. 2. Structure Investigation”, Macromolecules, 37, 1411-1421, 2004
    82. Mackenzie, D. John, Bescher, P. Eric, “Structures, properties and potential applications of ormosils”, Journal of Sol-Gel Science and Technology, v13, n1-3, p 371-377, Kluwer Academic Publishers, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE