簡易檢索 / 詳目顯示

研究生: 黃彥鈞
Yen-Chun Huang
論文名稱: 淺溝槽隔離對0.13微米射頻互補式金氧半場效電晶體低頻雜訊的影響
STI Effect on Flicker Noise in 0.13-um RF CMOSFET
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 63
中文關鍵詞: 淺溝槽隔離雜訊互補式金氧半場效電晶體低頻
外文關鍵詞: STI, Flicker, noise, CMOSFET, low frequency
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了提升高頻金氧半場效電晶體在高速通訊系統中的效能,通道長度和閘極厚度必須不斷地縮小。然而當電晶體不斷縮小的過程當中,許多負面的效應也會出現,像是漏電流的增加與低頻雜訊的上升。尤其是低頻雜訊的增加在高速通訊系統當中更為重要,因為低頻雜訊對於射頻電路的特性有相當顯著的影響,同時也限制住電路的偵測靈敏度。
    此篇論文,會整理與介紹許多電晶體的基本雜訊,像是熱雜訊..等等。而Flicker雜訊產生的機制與模型將會做較為詳細的介紹。因為淺溝槽隔離是此篇論文探討的重點,所以淺溝槽隔離的製程方法對於金氧半場效電晶體直流與低頻雜訊的影響也將有完整的整理與介紹。同時從過去參考文獻的研究,我們也將說明為何此篇論文要設計對稱與不對稱邊界延伸的結構設計。
    而本篇論文0.13微米特殊結構元件的直流量測結果,顯示出淺溝槽隔離對於元件移動率與臨界電壓有相當程度的影響。同時由「對稱延伸結構」的低頻雜訊量測結果,我們可以得知淺溝槽隔離確實會嚴重影響低頻雜訊特性,同時由不同延伸長度的量測,我們可以得知1-2微米的延伸既可達到相當程度的雜訊降低與穩定作用。而「不對稱延伸結構」的量測,讓我們更深入地探討淺溝槽隔離在源極與汲極對於低頻雜訊不同的效應,而最後我們將證明當元件操作於飽和區間,源極端會是雜訊的主要來源。


    To improve the performance of high frequency CMOS integrated circuits for achieving high-speed communication systems, the channel length and gate insulator thickness in MOSFET transistors are continuously scaled down. However, as the dimension keeps reducing, many undesired effects appear such as the increase of leakage current and the low frequency noise. In particular, the low frequency noise (also called flicker noise) becomes an important consideration, since the low frequency noise has a severe impact on the phase noise in RF and mixed-mode circuits, and it also limit the information capacity and detection sensitivity.
    In this thesis, many basic noise sources in semiconductor devices are reviewed including thermal noise, shot noise, etc. The flicker noise mechanisms and models are discussed in details. Because shallow trench isolation (STI) is the main factor focused in this thesis, STI effect on advanced CMOS characteristics will be discussed, including DC and noise characteristics, from some previous studies and STI properties we will show why we present the symmetric and asymmetric edge-extended layout design.
    The 0.13μm RF CMOS on chip measurement results are presented. For DC part demonstration, device Vth、Gm and ID which shifted by STI effect all will be included. By symmetric extending the distance between STI edge and the gate channel, the noise value and variation of devices flicker noise were reduced significantly. Under a fixed VDS of 0.7 V and VGS of 0.6 V, the edge extension devices (W/L= 1/0.13, extension distance= 1.2μm) showed a reduced noise current spectral density variation (SID/I2 ranges from 8.45□10-12 to 2.16□10-11 Hz-1 at 100 Hz) to only ~ one percent of that for devices without edge extension (SID/I2 ranges from 2.0□10-10 to 6.12□10-12 Hz-1 at 100 Hz). The noise improvement level depended on the edge extension values was experimentally investigated and measurement results showed that the impact of stress and traps introduced by STI on device flicker noise can be described by the carrier number with correlated mobility model. This study also indicated that the trend of STI effect on NMOS and PMOS noise performance is the same. In addition, when the devices are biased in saturation region the noise characteristics of asymmetric edge extension devices indicated that STI imperfect effect on source side is the main origins to degrade noise performance.

    Abstract I Acknowledgement II Contents III Chapter 1 1 1.1 Motivation 1 1.2 Thesis organization 2 Chapter 2 3 2.1 Fundamental Noise Source 3 2.1.1 Thermal noise 4 2.1.2 Shot noise 5 2.1.3 Generation-recombination noise 6 2.1.4 Avalanche noise 7 2.1.5 1/f noise 8 2.2 1/f noise in MOSFETs 9 2.2.1 Number fluctuations model [24] 9 2.2.2 Mobility fluctuations model 14 2.2.3 Unified model 16 2.2.4 RTS noise [46] 18 2.3 1/f Noise Effect on RF Circuits 21 2.3.1 Voltage controlled oscillators (VCOs) 22 2.3.1 Mixer 26 Chapter 3 27 3.1 STI Effect on Advanced CMOS Characteristics 27 3.1.1 STI effect on MOS DC characteristics 28 3.1.2 STI effect on MOS flicker noise characteristics 31 3.2 Edge-Extended Design 32 Chapter 4 37 4.1 1/f Noise Measurement Technique 37 4.1.1 1/f Noise Measurement setup 37 4.1.2 Measurement flow and points for attention 38 4.2 Edge-Extended structure measurement result and Analysis 40 4.2.1 DC measurement result and analysis 40 4.2.2 Symmetric extension 1/f noise measurement result and analysis 43 4.2.3 Asymmetric extension 1/f noise measurement result and analysis 51 4.2.4 Modeling the variation in the low frequency noise 54 Chapter 5 57 REFERENCE 58

    [1] Muller, M., Bidaud, M., Boeuf, F., Halimaoui, A., Lenoble, D., Ralla, R., and Skotnicki, T.: ‘Advanced junction engineering for 60nm-CMOS transistors’. Proc. ESSDERC 2002, Firenze, Italy, Sept. 2002,pp. 315–318.
    [2] Frank, D.J., and Taur, Y.: ‘Design considerations for CMOS near the limits of scaling’, Solid-State Electron., 2002, 46, pp. 315–320.
    [3] Risch, L.: ‘The end of the CMOS roadmap – new landscape beyond’, Mater. Sci. Eng., 2002, 19, pp. 363–368.
    [4] M. J. Deen and O. Marinov, “Noise in advanced electronic devices and circuits,” inProc. Int. Conf. Noise and Fluctuations (ICNF), 2005, pp. 3-12.
    [5] Y. M. Sheu, C. S. Chang, H. C. Lin, S. S. Lin, C. H. Lee, C. C. Wu, M. J. Chen, and C. H. Diaz, “Impact of STI mechanical stress in highly scaled MOSFETs,” VLSI Tech. Dig., pp.76-79, 2003.
    [6] M. Miyamoto, H. Ohta, Y. Kumagai, Y. Sonobe, K. Ishibashi, and Y. Tainaka, “Impact of reducing STI-induced stress on layout dependence of MOSFET characteristics,” IEEE Trans. Electron Devices, vol. 51. no. 3, pp. 440-443, March 2004.
    [7] C. Gallon, G. Reimbold, G. Ghibaudo, R. A. Bianchi, R. Gwoziecki, and C. Raynaud, “Electrical analysis of mechanical stress induced by shallow trench isolation,” in Proc. ESSDERC, 2003, pp.359-362.
    [8] Gregory Scott, Jeffrey Lutze, Mark Rubin, Faran Nouri, and Martin Manley, “NMOS Drive Current Reduction Caused by Transistor Layout and Trench Isolation Induced Stress.” in IEDM Tech. Dig., 1999, pp. 827-830.
    [9] T. Ohguro, Y. Okayama, K. Matsuzawa, K. Matsunaga, N. Aoki, K. Kojima, H.S. Momose, and K. Ishimaru, “The impact of oxynitride process, deuterium annealing and STI stress to 1/f noise of 0.11 □m CMOS,” Symp. on VLSI Tech., pp.37-38, 2003.
    [10] S. Meada, Y. S. Jin, J. A. Choi, S. Y. Oh, H. W. Lee, J. Y. Woo, M. C. Sun, J. H. Ku, K. Lee, S. G. Bae, S. G. Kang, J. H. Yang, Y. W. Kim, and K. P. Suh, “Impact of mechanical stress engineering on flicker noise characteristics,” Symp. on VLSI Tech. pp.102-103, June, 2004.
    [11] P. Andreani, and H. Sjoland, “Tail current noise suppression in RF CMOS VCOs, ” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 342-348, March, 2002.
    [12] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 179–194, 1998.
    [13] G. I. Wirth, J. Koh, R. D. Silva, R. Thewes, and R. Brederlow, “Modeling of statistical low-frequency noise of deep-submicrometer MOSFETs,” IEEE, Trans. Electron Devices, vol. 52, no. 7, pp. 1576-1588, July, 2005.
    [14] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, vol. 37, no. 3, pp.654-665, March, 1990.
    [15] Ghibaudo G, Roux-dit-Buisson O, Brini J. Phys. Stat. Sol. (a) 1992;132:501.
    [16] Hurley PK, Moran S, Wall L, Mathewson A, Mason B. In: De Graa□ HC, Van Kranenburg H, editors. Proc. ESSDERC '95. Gif-sur-Yvette, France: Editions FrontieÁ res, 1995. p. 147±50.
    [17] C. Y. Chan, J. D. Jin, Y. S. Lin, S. H. Hsu, and Y. Z. Juang “STI effect on flicker noise in 0.13-□m RF NMOS,” in Proc. ESSDERC, 2006, pp. 101-104.
    [18] Chih-Yuan Chan, Yu-Syuan Lin, Yen-Chun Huang, Shawn S. H. Hsu, and Ying-Zong Juang “Edge-extended Design for Improved Flicker Noise Characteristics in 0.13-μm RF NMOS,” IEEE Trans. on MTT, 2007.
    [19] Hans, Ramūnas, Arvydas“Microwave Noise in Semiconductor Devices” WILEY INTER-SCIENCE 2001.
    [20] W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern,” Annalen der Physik, vol. 57, pp. 541-567, 1918.
    [21] A. van der Ziel, Noise in solid state devices and circuits, John Wiley & Sons, 1986.
    [22] McIntyre, R. J. “Multiplication noise in uniform avalanche diodes”, IEEE Trans., vol, ED-13, no.1 , pp.164-168, 1966.
    [23] P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Rev. Mod.Phys., vol. 53, pp. 497-516, 1981.
    [24] E. Simoen, C. Claeys, “On the flicker noise in submicron silicon MOSFETs”, Solid-State Electronis, 43, pp.865-882, 1999.
    [25] A. L. McWorther, Semiconductor surface physics, University of Pennsylvania Press, 1957.
    [26] Jayaraman R, Sodini CG. IEEE Trans. Electron Devices 1989;36:1773.
    [27] Surya C, Hsiang TY. Solid-State Electron. 1988;31:95
    [28] Dutta P, Horn PM. Rev. Mod. Phys. 1981;53:497.
    [29] Celik Z, Hsiang TY. IEEE Trans. Electron Devices 1985;32:2797.
    [30] Celik-Butler Z, Hsiang TY. Solid-State Electron. 1987;30:419.
    [31] Uren MJ, Kirton MJ. Adv. Phys. 1989;38:367.
    [32] Dierickx B, Simoen E. J. Appl. Phys. 1992;71:2029.
    [33] Hooge FN. Phys. Lett. 1969;29A:139.
    [34] Hooge FN. IEEE Trans. Electron Devices 1994;41:1926.
    [35] Hooge FN, Kleinpenning TGM, Vandamme LKJ. Rep. Prog. Phys. 1981;44:479.
    [36] Chang J, Abidi AA, Viswanathan CR. IEEE Trans.Electron Devices 1994;41:1965.
    [37] Ghibaudo G, Roux O, Nguyen-Duc Ch, Balestra F, Brini J. Phys. Stat. Sol. (a) 1991;124:571.
    [38] Mikoshiba H. IEEE Trans. Electron Devices 1982;29:965.
    [39] Ralls KS, Skocpol WJ, Jackel LD, Howard RE, Fetter LA, Epworth RW, Tennant DM. Phys. Rev. Lett. 1984;52:228.
    [40] Hung KK, Ko PK, Hu C, Cheng YC. IEEE Electron Device Lett. 1990;11:90.
    [41] Ralls K, Skocpol W, Jackel L, Howard R, Fetter L,Epworth R, et al. Phys Rev Lett 1983;52:28.
    [42] Uren M, day D, Kirton M. Appl Phys Lett 1984;47:1195.
    [43] Kandiah K, Deighton M, Whiting F. J Appl Phys 1989;66:937.
    [44] Nakamura H, Yasuda N, Taniguchi K, Toriumi A. Jpn J Appl Phys 1989;28:L2057.
    [45] Schultz M, Karmann A. Appl Phys A 1991;52:104.
    [46] G. Ghibaudo, T. Boutchacha. Microelectronics Reliability 2002:42:573.
    [47] Machlup S. J Appl Phys 1954;25:341.
    [48] Simoen E, Dierickx B, Claeys C. Appl Phys A 1993;57:283.
    [49] Uren MJ, Day DJ, Kirton MJ. Appl. Phys. Lett. 1985;47:1195.
    [50] Roux Dit Buisson O, Ghibaudo G, Brini J. Solid-State Electron. 1992;35:1273.
    [51] Simoen E, Dierickx B, DeCanne B, Thoma F, Claeys C. Appl. Phys. A 1994;58:353.
    [52] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, 1996.
    [53] Ali Hajimiri and Thomas H. Lee “Design Issues in CMOS Differential LC Oscillators,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 5, MAY 1999.
    [54] S. Zhou and M.-C. F. Chung, “A CMOS passive mixer with low flicker noise for lowpower direct-conversion receiver,” IEEE J. Solid-State Circuits, vol. 40, pp. 1084-1093, 2005.
    [55] S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob, A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopcic, J. Luce, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, and M. Bohr, “A 90-nm logic technology featuring 50-nm strained-silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 _mSRAM cell,” in IEDM Tech. Dig., 2002, pp. 61–64.
    [56] Scott E. Thompson, Mark Armstrong, Chis Auth, Steve Cea, Robert Chau, Glenn Glass, Thomas Hoffman, Jason Klaus, Zhiyong Ma, Brian Mcintyre, Anand Murthy, Borna Obradovic, Lucian Shifren, Sam Sivakumar, Sunit Tyagi, Tahir Ghani, Kaizad Mistry,” A Logic Nanotechnology Featuring Strained-Silicon”, IEEE ELECTRON DEVICE LETTERS, VOL. 25, NO. 4, APRIL 2004.
    [57] Kern (Ken) Rim, Judy L. Hoyt, and James F. Gibbons,” Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 7, JULY 2000.
    [58] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “ Strain Dependence of the Performance Enhancement in Strained-Si- n-MOSFETs”, IEEE IEDM Tech. Dig., 1994, pp. 373-376.
    [59] K. Rim, J. Chu, H. Chen, K. A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H.-S. Wong, “strained-Si for sub-100-nm MOSFETs,” VLSI Symp. Tech. Dig., pp. 98–99, 2002.
    [60] G.E Pikus and G.L. Bir, Symmetry and Strain-Induced Effects in Semiconductors. New York: Wiley, 1974.
    [61] H. Park, K. S. Jones, J. A. Slinkman, and M. E. Law, “The effects of strain on dopant diffusion in silicon,” in IEDM Tech. Dig., 1993.
    [62] K. W. Su, Y. M. Sheu, C. K. Lin, S. J. Yang, W. J. Liang, X. Xi, C. S. Chiang, J. K. Her, Y. T. Chia, C. H. Diaz, and C. Hu, “A scaleable model for STI mechanical.
    [63] Angilent Seminar Sliders, NCTU, Hsinchu, 2005.
    [64] E. Morifuji, “Future perspective and scaling down roadmap for RF CMOS,” VLSI Sym, 1999.
    [65] Pierre H. Woerlee, “RF-CMOS Performance Trends,” IEEE, TED, 2001. R.-C. Liu, T.-P. Wang, L.-H. Lu, H. Wang, S.-H. Wang, and C.-P. Chao, “An 80GHz traveling-wave amplifier in a 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 154-155, Feb. 2005.
    [66] B. Kleveland, T. H. Lee, and S. S. Wong, “50-GHz interconnect design in standard silicon technology,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1913-1916, June 1998.
    [67] G. Ghione and C. Naldi, “Parameters of coplanar waveguides with lower ground plane,” Electronics Letters, vol. 19, no. 18, pp. 734-735, Sept. 1983.
    [68] Jun-De Jin, Shawn S. H. Hsu, Ming-Ta Yang, and Sally Liu “Low-Loss Single and Differential Semi-Coaxial Interconnects in Standard CMOS Process,” in IEEE MTT-S Int. Microwave Symp. June 2007.
    [69] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuations?,” IEEE Trans. Electron Devices, vol. 41, pp. 1936-1945, 1994.
    [70] R.Jayaraman, CG . Sodini, “A 1/f noise technique to extract the oxide trap density neat the conduction band edge of silicon,” IEEE Trans, Electron Devices, vol. 36, pp. 1773-1782, Sep. 1989.
    [71] M. J. Deen, O. Marinov, D. Onsongo, and S. Banerjee, “Low-frequency noise in SiGeC-based pMOSFETs,” Proc. SPIE, vol. 5470, pp. 251-225, 2004.
    [72] M. Sanden, O. Marinov, M. J. Deem, and M. Ostling, “A new model for the low-frequency noise and the noise level variation in polysilicon emitter BJTs,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 514-519, Mar. 2002.
    [73] M. Sanden, O. Marinov, M. J. Deem, and M. Ostling, “Modeling the variation of the low-frequency noise in polysilicon emitter bipolar junction transistors,” IEEE Electron Devices Lett., vol. 22, pp. 242-244, May 2001.
    [74] M. Sandén, O. Marinov, M. J. Deen, and M. Östling, “Modeling the variation of the low-frequency noise in polysilicon emitter bipolar junction transistors,” IEEE Electron Device Lett., vol. 22, pp. 242–244, May 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE