研究生: |
施宣誠 Shih, Edward S.C. |
---|---|
論文名稱: |
Data-driven Protein-Protein Docking 數據驅動的蛋白質對接 |
指導教授: |
黃明經
Hwang, Ming-Jing 呂平江 Lyu, Ping-Chiang |
口試委員: |
黃明經
Hwang, Ming-Jing 呂平江 Lyu, Ping-Chiang 楊進木 Yang, Jinn-Moon 林榮信 Lin, Jung-Hsin 楊立威 Yang, Lee-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 139 |
中文關鍵詞: | 數據驅動 、蛋白質-蛋白質對接 、蛋白質-蛋白質交互作用 、蛋白質複合體結構預測 、距離約束因子 、蛋白質複合體介面上胺基酸資訊 |
外文關鍵詞: | data-driven, protein-protein docking, protein-protein interaction, complex structure prediction, distance constraint, interface residue information, DPPD, IPPD, ZDOCK, CAPRI, HADDOCK |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質-蛋白質對接(protein-protein docking, PPD)是一種可以從元件蛋白質結構去預測蛋白質複合體結構的計算方法,具有揭示原子結構細節以及窺探一些用其他方法不易發現的能力。在各種不同的PPD方法測試和監測其進展情況的結論之一是,數據驅動的PPD特別值得注意,因為它可以顯著增加PPD的低成功率,但需要納入實驗數據或資訊當做對蛋白質對接的約束因子。不過,目前尚不清楚當使用不正確或涉及含糊不清的數據時,數據驅動PPD結果的錯誤程度,解決這個問題將會對使用PPD計算預測蛋白質複合體結構的實際應用提供指南。在這項工作中,我們的目標是描述使用約束因子,即實驗數據或資訊的數量和質量,如何影響數據驅動PPD預測的精度。有兩種主要類型的數據可以從生化生物物理實驗或生物資訊學預測得到:1)兩個特定原子之間的距離,和2)在蛋白質複合體介面上的胺基酸資訊,以幫助 PPD預測。我們的研究結果顯示,即使只有很少的距離數據,甚至在這些數據中含有大量的噪訊,還是可以從傳統的PPD預測裡大大提高PPD的性能。相對而言,需要有相當多介面胺基酸資訊的數量和相當的數據品質才能實現數據驅動PPD預測的高成功率。這項研究的結果為使用數據驅動PPD預測蛋白質複合體結構所需要的數據提供一些必要的指引,並指出一些在這一領域的未來研究的方向。
Protein-protein docking (PPD), a computational method for predicting the structure of a protein complex from known component structures, has the ability to reveal atomic details of the complex structure and make otherwise unattainable discoveries. Among different kinds of PPD methods developed, one conclusion from monitoring their progress over the years is that data-driven PPD is particularly useful because it can significantly increase the low success rates of PPD, albeit requiring the incorporation of experimental data or information as constraints for the docking. It is unclear, however, how vulnerable of data-driven PPD is to incorrect or ambiguous data, answers to which will provide guides for practical applications of using PPD to computationally predict protein complex structures. In this work, we aim to characterize the effects of using constraints, i.e. the amount and quality of experimental data or information, on the accuracies of data-driven PPD predictions. There are two main types of data that can be obtained from biochemical and biophysical experiments, or from bioinformatics predictions: 1) distance between two specific atoms, and 2) information of interface residues, to aid PPD predictions. Our results showed that only few distances, even with a significant amount of noises in the data, can greatly improve the performance of PPD from those of conventional PPD predictions. In comparison, a larger amount and better quality of interface residue information is needed for achieving high success rates in data-driven PPD predictions. The results from this study provide some needed guidelines for using data-driven PPD to predict protein complex structures, and point out directions for future research in this field.
Alber, F., Forster, F., Korkin, D., Topf, M., Sali, A., 2008. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem. 77, 443-77.
Amaro, R. E., Minh, D. D., Cheng, L. S., Lindstrom, W. M., Jr., Olson, A. J., Lin, J. H., Li, W. W., McCammon, J. A., 2007. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc. 129, 7764-5.
Anand, G. S., Law, D., Mandell, J. G., Snead, A. N., Tsigelny, I., Taylor, S. S., Ten Eyck, L. F., Komives, E. A., 2003. Identification of the protein kinase A regulatory RIalpha-catalytic subunit interface by amide H/2H exchange and protein docking. Proc Natl Acad Sci U S A. 100, 13264-9.
Bahadur, R. P., Chakrabarti, P., Rodier, F., Janin, J., 2003. Dissecting subunit interfaces in homodimeric proteins. Proteins. 53, 708-19.
Bahadur, R. P., Chakrabarti, P., Rodier, F., Janin, J., 2004. A dissection of specific and non-specific protein-protein interfaces. J Mol Biol. 336, 943-55.
Bahadur, R. P., Zacharias, M., 2008. The interface of protein-protein complexes: analysis of contacts and prediction of interactions. Cell Mol Life Sci. 65, 1059-72.
Ben-Zeev, E., Eisenstein, M., 2003. Weighted geometric docking: incorporating external information in the rotation-translation scan. Proteins. 52, 24-7.
Berchanski, A., Shapira, B., Eisenstein, M., 2004. Hydrophobic complementarity in protein-protein docking. Proteins. 56, 130-42.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E., 2000. The Protein Data Bank. Nucleic Acids Res. 28, 235-42.
Bhat, T. N., Bentley, G. A., Boulot, G., Greene, M. I., Tello, D., Dall'Acqua, W., Souchon, H., Schwarz, F. P., Mariuzza, R. A., Poljak, R. J., 1994. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc Natl Acad Sci U S A. 91, 1089-93.
Bhatnagar, J., Freed, J. H., Crane, B. R., 2007. Rigid body refinement of protein complexes with long-range distance restraints from pulsed dipolar ESR. Methods Enzymol. 423, 117-33.
Bogan, A. A., Thorn, K. S., 1998. Anatomy of hot spots in protein interfaces. J Mol Biol. 280, 1-9.
Bohr, J., Bohr, H., Brunak, S., Cotterill, R. M., Fredholm, H., Lautrup, B., Petersen, S. B., 1993. Protein structures from distance inequalities. J Mol Biol. 231, 861-9.
Brunger, A. T., 2007. Version 1.2 of the Crystallography and NMR system. Nat Protoc. 2, 2728-33.
Camacho, C. J., Ma, H., Champ, P. C., 2006. Scoring a diverse set of high-quality docked conformations: a metascore based on electrostatic and desolvation interactions. Proteins. 63, 868-77.
Chakrabarti, P., Janin, J., 2002. Dissecting protein-protein recognition sites. Proteins. 47, 334-43.
Chartron, J., Shiau, C., Stout, C. D., Carroll, K. S., 2007. 3‘-Phosphoadenosine-5‘-phosphosulfate Reductase in Complex with Thioredoxin: A Structural Snapshot in the Catalytic Cycle. Biochemistry. 46, 3942-51.
Chen, R., Li, L., Weng, Z., 2003. ZDOCK: an initial-stage protein-docking algorithm. Proteins. 52, 80-7.
Cheng, T. M., Blundell, T. L., Fernandez-Recio, J., 2007. pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins. 68, 503-15.
Chikkagoudar, S., Wang, K., Li, M., 2011. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores. BMC Res Notes. 4, 158.
Chothia, C., Janin, J., 1975. Principles of protein-protein recognition. Nature. 256, 705-8.
Chu, F., Shan, S. O., Moustakas, D. T., Alber, F., Egea, P. F., Stroud, R. M., Walter, P., Burlingame, A. L., 2004. Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry. Proc Natl Acad Sci U S A. 101, 16454-9.
Clore, G. M., 2000. Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear overhauser enhancement data and dipolar couplings by rigid body minimization. Proc Natl Acad Sci U S A. 97, 9021-5.
Clore, G. M., Schwieters, C. D., 2003. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. J Am Chem Soc. 125, 2902-12.
Comeau, S. R., Gatchell, D. W., Vajda, S., Camacho, C. J., 2004. ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 32, W96-9.
Comeau, S. R., Kozakov, D., Brenke, R., Shen, Y., Beglov, D., Vajda, S., 2007. ClusPro: performance in CAPRI rounds 6-11 and the new server. Proteins. 69, 781-5.
Comeau, S. R., Vajda, S., Camacho, C. J., 2005. Performance of the first protein docking server ClusPro in CAPRI rounds 3-5. Proteins. 60, 239-44.
Connolly, M. L., 1983. Solvent-accessible surfaces of proteins and nucleic acids. Science. 221, 709-13.
Davis, N. A., Pandey, A., McKinney, B. A., 2011. Real-world comparison of CPU and GPU implementations of SNPrank: a network analysis tool for GWAS. Bioinformatics. 27, 284-5.
de Vries, S. J., Bonvin, A. M., 2011. CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS One. 6, e17695.
de Vries, S. J., Melquiond, A. S., Kastritis, P. L., Karaca, E., Bordogna, A., van Dijk, M., Rodrigues, J. P., Bonvin, A. M., 2010. Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. Proteins. 78, 3242-9.
de Vries, S. J., van Dijk, M., Bonvin, A. M., 2010. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 5, 883-97.
Dematte, L., Prandi, D., 2010. GPU computing for systems biology. Brief Bioinform. 11, 323-33.
Dimova, K., Kalkhof, S., Pottratz, I., Ihling, C., Rodriguez-Castaneda, F., Liepold, T., Griesinger, C., Brose, N., Sinz, A., Jahn, O., 2009. Structural Insights into the Calmodulin−Munc13 Interaction Obtained by Cross-Linking and Mass Spectrometry. Biochemistry. 48, 5908-5921.
Dominguez, C., Boelens, R., Bonvin, A. M., 2003. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 125, 1731-7.
Dong, M., Lam, P. C., Pinon, D. I., Abagyan, R., Miller, L. J., 2009. Elucidation of the molecular basis of cholecystokinin Peptide docking to its receptor using site-specific intrinsic photoaffinity labeling and molecular modeling. Biochemistry. 48, 5303-12.
Duan, Y., Reddy, B. V., Kaznessis, Y. N., 2005. Physicochemical and residue conservation calculations to improve the ranking of protein-protein docking solutions. Protein Sci. 14, 316-28.
Dynerman, D., Butzlaff, E., Mitchell, J. C., 2009. CUSA and CUDE: GPU-accelerated methods for estimating solvent accessible surface area and desolvation. J Comput Biol. 16, 523-37.
Eisenstein, M., Ben-Shimon, A., Frankenstein, Z., Kowalsman, N., 2010. CAPRI targets T29-T42: proving ground for new docking procedures. Proteins. 78, 3174-81.
Eisenstein, M., Katchalski-Katzir, E., 2004. On proteins, grids, correlations, and docking. C R Biol. 327, 409-20.
Fernandez, A., Scheraga, H. A., 2003. Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proc Natl Acad Sci U S A. 100, 113-8.
Fernandez-Recio, J., Totrov, M., Abagyan, R., 2002. Screened charge electrostatic model in protein-protein docking simulations. Pac Symp Biocomput. 552-63.
Fernandez-Recio, J., Totrov, M., Abagyan, R., 2003. ICM-DISCO docking by global energy optimization with fully flexible side-chains. Proteins. 52, 113-7.
Fiorucci, S., Zacharias, M., 2010. Binding site prediction and improved scoring during flexible protein-protein docking with ATTRACT. Proteins. 78, 3131-9.
Friedrich, R., Fuentes-Prior, P., Ong, E., Coombs, G., Hunter, M., Oehler, R., Pierson, D., Gonzalez, R., Huber, R., Bode, W., Madison, E. L., 2002. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem. 277, 2160-8.
Friedrichs, M. S., Eastman, P., Vaidyanathan, V., Houston, M., Legrand, S., Beberg, A. L., Ensign, D. L., Bruns, C. M., Pande, V. S., 2009. Accelerating molecular dynamic simulation on graphics processing units. J Comput Chem. 30, 864-72.
Gabb, H. A., Jackson, R. M., Sternberg, M. J., 1997. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol. 272, 106-20.
Gajda, M. J., Tuszynska, I., Kaczor, M., Bakulina, A. Y., Bujnicki, J. M., 2010. FILTREST3D: discrimination of structural models using restraints from experimental data. Bioinformatics. 26, 2986-7.
Gardiner, E. J., Willett, P., Artymiuk, P. J., 2003. GAPDOCK: a Genetic Algorithm Approach to Protein Docking in CAPRI round 1. Proteins. 52, 10-4.
Gavin, A. C., Maeda, K., Kuhner, S., 2011. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol. 22, 42-9.
Gerega, S. K., Downard, K. M., 2006. PROXIMO--a new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS). Bioinformatics. 22, 1702-9.
Gerstein, M., Krebs, W., 1998. A database of macromolecular motions. Nucleic Acids Res. 26, 4280-90.
Goh, C. S., Milburn, D., Gerstein, M., 2004. Conformational changes associated with protein-protein interactions. Curr Opin Struct Biol. 14, 104-9.
Gottschalk, K. E., Neuvirth, H., Schreiber, G., 2004. A novel method for scoring of docked protein complexes using predicted protein-protein binding sites. Protein Eng Des Sel. 17, 183-9.
Gray, J. J., 2006. High-resolution protein-protein docking. Curr Opin Struct Biol. 16, 183-93.
Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., Baker, D., 2003. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol. 331, 281-99.
Green, N. S., Reisler, E., Houk, K. N., 2001. Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. Protein Sci. 10, 1293-304.
Halperin, I., Ma, B., Wolfson, H., Nussinov, R., 2002. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins. 47, 409-43.
Halperin, I., Wolfson, H., Nussinov, R., 2004. Protein-protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. Structure. 12, 1027-38.
Harikumar, K. G., Gao, F., Pinon, D. I., Miller, L. J., 2008. Use of multidimensional fluorescence resonance energy transfer to establish the orientation of cholecystokinin docked at the type A cholecystokinin receptor. Biochemistry. 47, 9574-81.
Herrick, D. Z., Sterbling, S., Rasch, K. A., Hinderliter, A., Cafiso, D. S., 2006. Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry. 45, 9668-74.
Heuser, P., Bau, D., Benkert, P., Schomburg, D., 2005. Refinement of unbound protein docking studies using biological knowledge. Proteins. 61, 1059-67.
Honig, B., Nicholls, A., 1995. Classical electrostatics in biology and chemistry. Science. 268, 1144-9.
Hu, Z., Ma, B., Wolfson, H., Nussinov, R., 2000. Conservation of polar residues as hot spots at protein interfaces. Proteins. 39, 331-42.
Huang, K., Lu, W., Anderson, S., Laskowski, M., Jr., James, M. N., 1995. Water molecules participate in proteinase-inhibitor interactions: crystal structures of Leu18, Ala18, and Gly18 variants of turkey ovomucoid inhibitor third domain complexed with Streptomyces griseus proteinase B. Protein Sci. 4, 1985-97.
Huang, S. Y., Zou, X., 2010. MDockPP: A hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Proteins. 78, 3096-103.
Hwang, H., Vreven, T., Pierce, B. G., Hung, J. H., Weng, Z., 2010. Performance of ZDOCK and ZRANK in CAPRI rounds 13-19. Proteins. 78, 3104-10.
Jackson, R. M., Gabb, H. A., Sternberg, M. J., 1998. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J Mol Biol. 276, 265-85.
Janin, J., 1999. Wet and dry interfaces: the role of solvent in protein-protein and protein-DNA recognition. Structure. 7, R277-9.
Janin, J., 2010. Protein-protein docking tested in blind predictions: the CAPRI experiment. Molecular BioSystems. 6, 2351-62.
Janin, J., Chothia, C., 1990. The structure of protein-protein recognition sites. J Biol Chem. 265, 16027-30.
Jiang, F., Kim, S. H., 1991. "Soft docking": matching of molecular surface cubes. J Mol Biol. 219, 79-102.
Jones, S., Thornton, J. M., 1996. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 93, 13-20.
Kalkhof, S., Ihling, C., Mechtler, K., Sinz, A., 2005. Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex. Anal Chem. 77, 495-503.
Karaca, E., Melquiond, A. S., de Vries, S. J., Kastritis, P. L., Bonvin, A. M., 2010. Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server. Mol Cell Proteomics. 9, 1784-94.
Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., Vakser, I. A., 1992. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A. 89, 2195-9.
Knight, J. L., Mekler, V., Mukhopadhyay, J., Ebright, R. H., Levy, R. M., 2005. Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability. Biophys J. 88, 925-38.
Kozakov, D., Brenke, R., Comeau, S. R., Vajda, S., 2006. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins. 65, 392-406.
Kozakov, D., Hall, D. R., Beglov, D., Brenke, R., Comeau, S. R., Shen, Y., Li, K., Zheng, J., Vakili, P., Paschalidis, I., Vajda, S., 2010. Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19. Proteins. 78, 3124-30.
Lasker, K., Phillips, J. L., Russel, D., Velazquez-Muriel, J., Schneidman-Duhovny, D., Tjioe, E., Webb, B., Schlessinger, A., Sali, A., 2010. Integrative structure modeling of macromolecular assemblies from proteomics data. Mol Cell Proteomics. 9, 1689-702.
Lawrence, M. C., Colman, P. M., 1993. Shape complementarity at protein/protein interfaces. J Mol Biol. 234, 946-50.
Lee, B., Richards, F. M., 1971. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 55, 379-400.
Leitner, A., Walzthoeni, T., Kahraman, A., Herzog, F., Rinner, O., Beck, M., Aebersold, R., 2010. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics. 9, 1634-49.
Lensink, M. F., Mendez, R., Wodak, S. J., 2007. Docking and scoring protein complexes: CAPRI 3rd Edition. Proteins. 69, 704-18.
Lensink, M. F., Wodak, S. J., 2010. Docking and scoring protein interactions: CAPRI 2009. Proteins. 78, 3073-84.
Lesk, V. I., Sternberg, M. J., 2008. 3D-Garden: a system for modelling protein-protein complexes based on conformational refinement of ensembles generated with the marching cubes algorithm. Bioinformatics. 24, 1137-44.
Li, Y., Hu, Y., Zhang, X., Xu, H., Lescop, E., Xia, B., Jin, C., 2007. Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis. J Biol Chem. 282, 11078-83.
Lijnzaad, P., Argos, P., 1997. Hydrophobic patches on protein subunit interfaces: characteristics and prediction. Proteins. 28, 333-43.
Lo Conte, L., Chothia, C., Janin, J., 1999. The atomic structure of protein-protein recognition sites. J Mol Biol. 285, 2177-98.
Ma, B., Elkayam, T., Wolfson, H., Nussinov, R., 2003. Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci U S A. 100, 5772-7.
Ma, B., Wolfson, H. J., Nussinov, R., 2001. Protein functional epitopes: hot spots, dynamics and combinatorial libraries. Curr Opin Struct Biol. 11, 364-9.
Ma, X. H., Li, C. H., Shen, L. Z., Gong, X. Q., Chen, W. Z., Wang, C. X., 2005. Biologically enhanced sampling geometric docking and backbone flexibility treatment with multiconformational superposition. Proteins. 60, 319-23.
Manavski, S. A., Valle, G., 2008. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics. 9 Suppl 2, S10.
Mandell, J. G., Roberts, V. A., Pique, M. E., Kotlovyi, V., Mitchell, J. C., Nelson, E., Tsigelny, I., Ten Eyck, L. F., 2001. Protein docking using continuum electrostatics and geometric fit. Protein Eng. 14, 105-13.
Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., Wolfson, H. J., 2008. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 36, W229-32.
Mashiach, E., Schneidman-Duhovny, D., Peri, A., Shavit, Y., Nussinov, R., Wolfson, H. J., 2010. An integrated suite of fast docking algorithms. Proteins. 78, 3197-204.
Matthews, S., Sawmynaden, K., Saouros, S., Friedrich, N., Marchant, J., Simpson, P., Bleijlevens, B., Blackman, M. J., Soldati-Favre, D., 2008. Structural insights into microneme protein assembly reveal a new mode of EGF domain recognition. Embo Reports. 9, 1149-55.
Maurer, M. C., Trosset, J. Y., Lester, C. C., DiBella, E. E., Scheraga, H. A., 1999. New general approach for determining the solution structure of a ligand bound weakly to a receptor: structure of a fibrinogen Aalpha-like peptide bound to thrombin (S195A) obtained using NOE distance constraints and an ECEPP/3 flexible docking program. Proteins. 34, 29-48.
McCoy, A. J., Chandana Epa, V., Colman, P. M., 1997. Electrostatic complementarity at protein/protein interfaces. J Mol Biol. 268, 570-84.
Melo, F., Feytmans, E., 1997. Novel knowledge-based mean force potential at atomic level. J Mol Biol. 267, 207-22.
Mendez, R., Leplae, R., De Maria, L., Wodak, S. J., 2003. Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins. 52, 51-67.
Mendez, R., Leplae, R., Lensink, M. F., Wodak, S. J., 2005. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins. 60, 150-69.
Mintseris, J., Pierce, B., Wiehe, K., Anderson, R., Chen, R., Weng, Z., 2007. Integrating statistical pair potentials into protein complex prediction. Proteins. 69, 511-20.
Mintseris, J., Wiehe, K., Pierce, B., Anderson, R., Chen, R., Janin, J., Weng, Z., 2005. Protein-Protein Docking Benchmark 2.0: an update. Proteins. 60, 214-6.
Miyazawa, S., Jernigan, R. L., 1996. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 256, 623-44.
Miyazawa, S., Jernigan, R. L., 1999. Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins. 34, 49-68.
Moont, G., Gabb, H. A., Sternberg, M. J., 1999. Use of pair potentials across protein interfaces in screening predicted docked complexes. Proteins. 35, 364-73.
Morales, R., Kachalova, G., Vellieux, F., Charon, M. H., Frey, M., 2000. Crystallographic studies of the interaction between the ferredoxin-NADP+ reductase and ferredoxin from the cyanobacterium Anabaena: looking for the elusive ferredoxin molecule. Acta Crystallogr D Biol Crystallogr. 56, 1408-12.
Morelli, X. J., Palma, P. N., Guerlesquin, F., Rigby, A. C., 2001. A novel approach for assessing macromolecular complexes combining soft-docking calculations with NMR data. Protein Sci. 10, 2131-7.
Norel, R., Fischer, D., Wolfson, H. J., Nussinov, R., 1994. Molecular surface recognition by a computer vision-based technique. Protein Eng. 7, 39-46.
Palma, P. N., Krippahl, L., Wampler, J. E., Moura, J. J., 2000. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins. 39, 372-84.
Patterson, D. A., Hennessy, J. L., Computer Organization and Design - The Hardware/Software Interface (4th Edition). Elsevier, 2009.
Pearlman, D. A., Charifson, P. S., 2001. Are Free Energy Calculations Useful in Practice? A Comparison with Rapid Scoring Functions for the p38 MAP Kinase Protein System. Journal of Medicinal Chemistry. 44, 3417-23.
Pierce, B., Weng, Z., 2007. ZRANK: reranking protein docking predictions with an optimized energy function. Proteins. 67, 1078-86.
Pierce, B., Weng, Z., 2008. A combination of rescoring and refinement significantly improves protein docking performance. Proteins. 72, 270-9.
Prehna, G., Ivanov, M. I., Bliska, J. B., Stebbins, C. E., 2006. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell. 126, 869-80.
Qin, S., Zhou, H. X., 2010. Selection of near-native poses in CAPRI rounds 13-19. Proteins. 78, 3166-73.
Renault, L., Guibert, B., Cherfils, J., 2003. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature. 426, 525-30.
Ritchie, D. W., 2008. Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci. 9, 1-15.
Ritchie, D. W., Kemp, G. J., 2000. Protein docking using spherical polar Fourier correlations. Proteins. 39, 178-94.
Rodier, F., Bahadur, R. P., Chakrabarti, P., Janin, J., 2005. Hydration of protein-protein interfaces. Proteins. 60, 36-45.
Sachchidanand, Lequin, O., Staunton, D., Mulloy, B., Forster, M. J., Yoshida, K., Campbell, I. D., 2002. Mapping the heparin-binding site on the 13-14F3 fragment of fibronectin. J Biol Chem. 277, 50629-35.
Scarsi, M., Majeux, N., Caflisch, A., 1999. Hydrophobicity at the surface of proteins. Proteins. 37, 565-75.
Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H. J., 2005. Geometry-based flexible and symmetric protein docking. Proteins. 60, 224-31.
Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I., Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., Wolfson, H. J., 2003. Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins. 52, 107-12.
Schulz, D. M., Ihling, C., Clore, G. M., Sinz, A., 2004. Mapping the topology and determination of a low-resolution three-dimensional structure of the calmodulin-melittin complex by chemical cross-linking and high-resolution FTICRMS: direct demonstration of multiple binding modes. Biochemistry. 43, 4703-15.
Schulz, D. M., Kalkhof, S., Schmidt, A., Ihling, C., Stingl, C., Mechtler, K., Zschornig, O., Sinz, A., 2007. Annexin A2/P11 interaction: new insights into annexin A2 tetramer structure by chemical crosslinking, high-resolution mass spectrometry, and computational modeling. Proteins. 69, 254-69.
Schwieters, C. D., Kuszewski, J. J., Tjandra, N., Clore, G. M., 2003. The Xplor-NIH NMR molecular structure determination package. J Magn Reson. 160, 65-73.
Seebacher, J., Mallick, P., Zhang, N., Eddes, J. S., Aebersold, R., Gelb, M. H., 2006. Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing. J Proteome Res. 5, 2270-82.
Sharma, R., Gupta, N., Narang, V., Mittal, A., 2011. Parallel implementation of DNA sequences matching algorithms using PWM on GPU architecture. Int J Bioinform Res Appl. 7, 202-15.
Sheinerman, F. B., Norel, R., Honig, B., 2000. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol. 10, 153-9.
Shih, E. S., Hwang, M. J., 2012. On the use of distance constraints in protein-protein docking computations. Proteins. 80, 194-205.
Sippl, M. J., 1990. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 213, 859-83.
Smith, G. R., Sternberg, M. J., 2002. Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol. 12, 28-35.
Smith, G. R., Sternberg, M. J., Bates, P. A., 2005. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol. 347, 1077-101.
Snyman, J., Kok, S., 2009. A reassessment of the Snyman–Fatti dynamic search trajectory method for unconstrained global optimization. Journal of Global Optimization. 43, 67-82.
Stein, A., Mosca, R., Aloy, P., 2011. Three-dimensional modeling of protein interactions and complexes is going 'omics. Curr Opin Struct Biol. 21, 200-8.
Symmons, M. F., Bokma, E., Koronakis, E., Hughes, C., Koronakis, V., 2009. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A. 106, 7173-8.
Tang, C., Clore, G. M., 2006. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints. J Biomol NMR. 36, 37-44.
Taylor, J. S., Burnett, R. M., 2000. DARWIN: a program for docking flexible molecules. Proteins. 41, 173-91.
Thorn, K. S., Bogan, A. A., 2001. ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics. 17, 284-5.
Tress, M., de Juan, D., Grana, O., Gomez, M. J., Gomez-Puertas, P., Gonzalez, J. M., Lopez, G., Valencia, A., 2005. Scoring docking models with evolutionary information. Proteins. 60, 275-80.
Tsai, C. J., Nussinov, R., 1997. Hydrophobic folding units at protein-protein interfaces: implications to protein folding and to protein-protein association. Protein Sci. 6, 1426-37.
Tsai, L.-W., 1999. Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, Inc.
Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatani, E., Schulte, C. F., Tolmie, D. E., Kent Wenger, R., Yao, H., Markley, J. L., 2008. BioMagResBank. Nucleic Acids Res. 36, D402-8.
Vajda, S., Camacho, C. J., 2004. Protein-protein docking: is the glass half-full or half-empty? Trends Biotechnol. 22, 110-6.
Vajda, S., Kozakov, D., 2009. Convergence and combination of methods in protein-protein docking. Curr Opin Struct Biol. 19, 164-70.
Vakser, I. A., Aflalo, C., 1994. Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins. 20, 320-9.
Vakser, I. A., Matar, O. G., Lam, C. F., 1999. A systematic study of low-resolution recognition in protein--protein complexes. Proc Natl Acad Sci U S A. 96, 8477-82.
van Dijk, A. D., Boelens, R., Bonvin, A. M., 2005. Data-driven docking for the study of biomolecular complexes. FEBS J. 272, 293-312.
Verdonk, M. L., Cole, J. C., Watson, P., Gillet, V., Willett, P., 2001. SuperStar: improved knowledge-based interaction fields for protein binding sites. J Mol Biol. 307, 841-59.
Vouzis, P. D., Sahinidis, N. V., 2011. GPU-BLAST: using graphics processors to accelerate protein sequence alignment. Bioinformatics. 27, 182-8.
Whittaker, E. T., 1937. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press.
Yue, S.-Y., 1990. Distance-constrained molecular docking by simulated annealing. Protein Engineering. 4, 177-184.
Yung, L. S., Yang, C., Wan, X., Yu, W., 2011. GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies. Bioinformatics. 27, 1309-10.
Zacharias, M., 2005. ATTRACT: protein-protein docking in CAPRI using a reduced protein model. Proteins. 60, 252-6.
Zacharias, M., 2010. Accounting for conformational changes during protein-protein docking. Curr Opin Struct Biol. 20, 180-6.
Zhang, C., Liu, S., Zhou, H., Zhou, Y., 2004. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci. 13, 400-11.
Zhang, C., Vasmatzis, G., Cornette, J. L., DeLisi, C., 1997. Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol. 267, 707-26.
Zhou, Y., Liepe, J., Sheng, X., Stumpf, M. P., Barnes, C., 2011. GPU accelerated biochemical network simulation. Bioinformatics. 27, 874-6.