研究生: |
莊勝超 Chuang, Sheng-Chao |
---|---|
論文名稱: |
以微波電漿化學氣相沉積法進行單一步驟成長奈米碳混合材料之場發射研究 Study on field emission characteristics of hybrid nano-carbon materials fabricated by MPCVD in one step |
指導教授: |
蔡宏營
Tsai, Hung-Yin |
口試委員: |
葉孟考
Yeh, Meng-Kao 李紫原 Lee, Chi -Young |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 場發射 、奈米碳片 、成長機制 、奈米碳片球 、化學氣相沉積法 |
外文關鍵詞: | field emission, carbon nano-flake, growth mechanism, carbon nano-flake ball, Microwave Plasma Chemical Vapor Deposition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為利用一步驟製程,製作出優異場發射效應之碳複合材料與混合材料,藉此縮短製程時間,並憑藉場發射之高功率與低耗能兩大優點,將本研究之碳複合材料應用於場發射平面顯示器或電子顯微鏡之電子槍發射源。
本研究方法為以鑽石粉震盪及觸媒塗佈,對矽基板進行前處理,再以微波電漿化學氣相沉積法薄膜。沉積之結果會以掃描式電子顯微鏡分析其表面形貌,確認為複合材料後,再以拉曼光譜分析其材料結構;最後以場發射量測儀量測其場發射特性。
本研究之一步驟製程,在N2:H2:CH4 = 40:51.1:20 sccm之氣體參數下,成長出了奈米碳片球複合奈米碳片薄膜。在功率1600 W的成長環境下,所成長出之複合材料擁有低起始電場2.10 V/μm。
以相同一步驟製程,氣體參數改為N2:H2:CH4 = 40:51.1:35 sccm,成長出表面形貌如繡球蔥與鹿角珊瑚之混合結構薄膜,定義其為「微米碳珊瑚」,簡稱CMC。CMC-20min試片場發射特性優異,起始電場為2.20 V/μm。觸媒無金屬顆粒同樣能成長出CMC結構,NF起始電場為2.40 V/μm,電流穩定性的表現良好,在固定電流密度1 mA/cm2下,連續量測24小時,電流仍相當穩定。本研究亦提出了微米碳珊瑚的成長機制,於日後對此新興材料之改良,奠定了基礎。
The purpose of this study is to use a one-step process to produce excellent field emission carbon composite materials and hybrid materials, thereby reducing the cost of the process. Field emission has two advantages of high power and low energy consumption. It can be applied flat-panel displays or electron emission sources of electron microscopes.
Our method is use two pre-treatment on the silicon substrate. One is ultrasonicating with diamond nanoparticle, and the other is coating with catalyst. Then we prepared carbon hybrid materials by microwave plasma chemical vapor deposition method. The surface morphology of the composites is determined by scanning electron microscopy, and then the Raman spectra are used to analyze the structure of the composites. Finally, measuring the field emission characteristics of carbon hybrid materials.
By our method, the carbon composite CNFB/CNF was grown under N2/H2/CH4 (40/51.1/20) mixed gas 140 sccm. When microwave power was 1600 W, it had a low turn electric field of 2.10 V/μm.
In the same step, the CH4 gas flow changed to 35 sccm, and then we got a new carbon hybrid film. Its surface morphology like allium giganteum and acropora, and we defined it as "Carbon micron-coral". CMC-20min had excellent field emission characteristics. Its turn-on field only had 2.20 V/μm. The catalyst without ferric nitrate can also grow CMC structure. The NFNS turn-on field was 2.40 V/μm. Measuring with constant current density 1 mA/cm2 continuously for 24 hours, the current is still quite stable. In this work growth process of CMC film growth in MPCVD have been studied.
[1] Y. Li, Y. Sun, and J. T. W. Yeow, "Nanotube field electron emission: principles, development, and applications," Nanotechnology, vol. 26, pp. 1-23, 2015.
[2] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society of London. Series A, vol. 119, pp. 173-181, 1928.
[3] J. He, P. H. Cutler, and N. M. Miskovsky, "Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters," Applied physics letters, vol. 59, pp. 1644-1646, 1991.
[4] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied physics letters, vol. 63, pp. 702-704, 1993.
[5] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B, vol. 12, pp. 776-780, 1994.
[6] K. L. Jensen and E. G. Zaidman, "Analytic expressions for emission characteristics as a function of experimental parameters in sharp field emitter devices," Journal of Vacuum Science & Technology B, vol. 13, pp. 511-515, 1995.
[7] T. S. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, pp. 3699-3701, 2001.
[8] T. S. Fisher and D. G. Walker., "Thermal and electrical energy transport and conversion in nanoscale electron field emission processes," Journal of heat transfer, vol. 124, pp. 954-962, 2002.
[9] J. L. Duan, D. Y. Lei, F. Chen, S. P. Lau, W. I. Milne, M. E. Toimil-Molares, C. Trautmann, and J. Liu, "Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission," ACS Applied Materials & Interfaces, vol. 8, pp. 472-479, 2016.
[10] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
[11] J. S. Suh, K. S. Jeong, J. S. Lee, and Intaek, "Study of the field-screening effect of highly ordered carbon nanotube arrays," Applied physics letters, vol. 80, pp. 2392-2394, 2002.
[12] R. C. Smith and S. R. P. Silv, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, pp. 133104-133106, 2009.
[13] M. Khaneja, S. Ghosh, P. K. Chaudhury, V. D. Vankar, and V. Kumar, "Designing variable height carbon nanotube bundle for enhanced electron field emission," Physica E, vol. 69, pp. 171-176, 2015.
[14] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60 : Buckminsterfullerene," Natture, vol. 318, pp. 162-163, 1985.
[15] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60 : a new form of carbon," Natture, vol. 347, pp. 354-358, 1990.
[16] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[17] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993.
[18] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature, vol. 363, pp. 605-607, 1993.
[19] A. Kis and A. Zettl, "Nanomechanics of carbon nanotubes," Philosophical transactions of the royal society A, vol. 366, pp. 1591-1611, 2008.
[20] H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, and S. S. Y. Achiba, "Diameter control of single-walled carbon nanotubes," Carbon, vol. 38, pp. 1691-1697, 2000.
[21] M. Kumar and Y. Ando, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 3739-3758, 2010.
[22] S. Hofmann, G. Csanyi, A. C. Ferrari, M. C. Payne, and J. Robertson, "Surface Diffusion: The Low Activation Energy Path for Nanotube Growth," Physical Review Letters vol. 95, pp. 1-4, 2005.
[23] A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Eres, "In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition," Applied Physics A, vol. 81, pp. 223-240, 2005.
[24] C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, "Diameter-controlled synthesis of carbon nanotubes," The Journal of Physical Chemistry B vol. 106, pp. 2429-2433, 2002.
[25] M. Aksak, S. Kir, and Y. Selamet, "Effect of the growth temperature on carbon nanotubes grown by thermal chemical vapor deposition method " Journal of Optoelectronics and Advanced Materials, vol. 1, pp. 281-284, 2009.
[26] Y. Ando, X. Zhao, T. Sugai, and M. Kumar, "Growing carbon nanotubes," Materials Today, pp. 22-29, 2004.
[27] G. D. Nessim, "Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition," Nanoscale, vol. 2, pp. 1306-1323, 2010.
[28] M. Hiramatsu, T. Deguchi, H. Nagao, and M. Hori, "Aligned Growth of Single-Walled and Double-Walled Carbon Nanotube Films by Control of Catalyst Preparation," Japanese journal of applied physics, vol. 46, pp. 303-306, 2007.
[29] W. A. d. Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field-Emission Electron Source," Science, vol. 270, pp. 1179-1180, 1995.
[30] S. Sridhar, C. Tiwary, S. Vinod, J. J. Taha-Tijerina, S. Sridhar, K. Kalaga, B. Sirota, A. H. C. Hart, S. Ozden, R. K. Sinha, Harsh, R. Vajtai, W. Choi, K. Kordás, and P. M. Ajayan, "Field Emission with Ultralow Turn On Voltage from Metal Decorated Carbon Nanotubes," ACS NANO, vol. 8, pp. 7763-7770, 2014.
[31] Z. Li, X. Yang, F. He, B. Bai, H. Zhou, C. Li, and Q. Dai, "High current field emission from individual non-linear resistor ballasted carbon nanotube cluster array," Carbon, vol. 89, pp. 1-7, 2015.
[32] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
[33] K. W. Urban, "Electron microscopy: The challenges of graphene," Nature Materials, vol. 10, pp. 165-166, 2011.
[34] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, 2008.
[35] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, vol. 320, p. 1308, 2008.
[36] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology, vol. 3, pp. 101-105, 2008.
[37] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[38] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, 2009.
[39] J. L. Qi, W. T. Zheng, X. H. Zheng, X. Wang, and H. W. Tian, "Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition," Applied Surface Science, vol. 257, pp. 6531-6534, 2011.
[40] A. Kumar, A. A. Voevodin, D. Zemlyanov, D. N. Zakharov, and T. S. Fisher, "Rapid synthesis of few layer graphene over cu foil," Carbon, vol. 50, pp. 1546-1553, 2012.
[41] Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H. M. Cheng, "Field Emission of Single-Layer Graphene Films," Advanced Materials, vol. 21, pp. 1756-1760, 2009.
[42] C. Wu, F. Li, Y. Zhang, and T. Guo, "Field emission from vertical graphene sheets formed by screen-printing technique," Vacuum, vol. 94, pp. 48-52, 2013.
[43] Y. Ando, X. Zhao, and M. Ohkohchi, "Production of petal-like graphite sheets by hydrogen arc discharge," Carbon, vol. 35, pp. 153-158, 1997.
[44] Y. Wu, P. Qiao, T. Chong, and Z. Shen, "Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition," Advanced Materials, vol. 14, pp. 64-67, 2002.
[45] A. T. H. Chuang, J. Robertson, B. O. Boskovic, and K. K. K. Koziol, "Three-dimensional carbon nanowall structures," Applied physics letters, vol. 90, p. 123107, 2007.
[46] L. Zeng, D. Lei, W. Wang, J. Liang, Z. Wang, N. Yao, and B. Zhang, "Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method," Applied Surface Science, vol. 254, pp. 1700-1704, 2008.
[47] C. Lu, Q. Dong, K. Tulugan, Y. M. Park, M. A. More, J. Kim, and T. G. Kim, "Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition," Journal of Nanoscience and Nanotechnology, vol. 16, pp. 1680-1684, 2016.
[48] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, "Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition," Nanotechnology, vol. 19, pp. 1-6, 2008.
[49] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C. V. Haesendonck, "Field emission from vertically aligned few-layer graphene " Journal of Applied Physics vol. 104, p. 084301, 2008.
[50] Y. Zhang, J. Du, S. Tang, P. Liu, S. Deng, J. Chen, and N. Xu, "Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology," Nanotechnology, vol. 23, pp. 1-6, 2012.
[51] W. G. Eversole, "Synthesis of diamond," US Patents No. 3030187 and No. 3030188, 1962.
[52] J. C. Angus, H. A. Will, and W. S. Stanko, "Growth of Diamond Seed Crystals by Vapor Deposition," Journal of Applied Physics, vol. 39, pp. 2915-2922, 1968.
[53] S. K. Dolukhanyan, M. D. Nersesyan, A. B. Nalbandyan, I. P. Borovinskaya, and A. G. Merzhanov, "Combustion of transition metals in hydrogen," Doklady Akademii Nauk SSSR, vol. 231, pp. 675-678, 1976.
[54] M. V. Thiel and F. H. Ree, "Thermodynamic properties and phase diagram of the graphite-diamond-liquid carbon system," High Pressure Research, vol. 10, pp. 607-628, 1992.
[55] Y. Liou, A. Inspektor, R. Weimer, D. Knight, and R. Messier, "The effect of oxygen in diamond deposition by microwave plasma enhanced chemical vapor deposition," Journal of Materials Research, vol. 5, pp. 2305-2312, 1990.
[56] T. S. Yang, J. Y. Lai, C. L. Cheng, and M. S. Wong, "Growth of faceted, ballas-like and nanocrystalline diamond films deposited in CH4/H2/Ar MPCVD," Diamond and related materials, vol. 10, pp. 2161-2166, 2001.
[57] W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, "Electron field emission from chemical vapor deposited diamond," Journal of Vacuum Science & Technology B, vol. 14, pp. 2011-2019, 1996.
[58] D. Zhou, A. R. Krauss, L. C. Qin, T. G. McCauley, D. M. Gruen, T. D. Corrigan, R. P. H. Chang, and H. Gnaser, "Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas," Journal of Applied Physics, vol. 82, pp. 4546-4550, 1997.
[59] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Zhou, Q. Wang, D. J. Yang, J. Q. Li, and S. Z. Shanyong, "Electron field emission enhancement effects of nano-diamond films," Surface and Coatings Technology vol. 167, pp. 143-147, 2003.
[60] D. Pradhan, Y. C. Lee, C. W. Pao, W. F. Pong, and I. N. Lin, "Low temperature growth of ultrananocrystalline diamond film and its field emission properties," Diamond & Related Materials, vol. 15, pp. 2001-2005, 2006.
[61] Y. Xiao, Y. Liu, L. Cheng, D. Yuan, J. Zhang, Y. Gu, and G. Sun, "Flower-like carbon materials prepared via a simple solvothermal route," Carbon, vol. 44, pp. 1589-1591, 2006.
[62] J. M. Shen and Y. T. Feng, "Formation of Flower-Like Carbon Nanosheet Aggregations and Their Electrochemical Application," The Journal of Physical Chemistry C, vol. 112, pp. 13114-13120, 2008.
[63] S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao, and L. Ling, "Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes," Journal of Power Sources, vol. 196, pp. 3887-3893, 2011.
[64] I. L. Chang, P. H. Tsai, and H. Y. Tsai, "Field emission characteristics of CNFB-CNT hybrid material grown by one-step MPCVD," Diamond & Related Materials, vol. 69, pp. 229-236, 2016.
[65] J. L. Qi, X. Wang, W. T. Zheng, H. W. Tian, C. Liu, Y. L. Lu, Y. S. Peng, and G. Cheng, "Effects of total CH4/Ar gas pressure on the structures and field electron emission properties of carbon nanomaterials grown by plasma-enhanced chemical vapor deposition," Applied Surface Science, vol. 256, pp. 1542-1547, 2009.
[66] P. H. Tsai and H. Y. Tsai, "Fabrication and field emission characteristic of microcrystalline diamond/carbon nanotube double-layered pyramid arrays," Thin Solid Films, vol. 584, pp. 330-335, 2015.
[67] P. T. Tseng, P. H. Tsai, A. Lu, J. L. Hou, and H. Y. Tsai, "Field emission characteristic study on bristling few-layer graphite/diamond composite film," Diamond & Related Materials, vol. 73, pp. 121-131, 2017.
[68] K. E. Spear and J. P. Dismukes, "Synthetic diamond: emerging CVD science and technology," John Wiley & Sons, vol. 25, 1994.
[69] 廖駿偉, "OES技術於電漿製程監測之應用," 工業材料雜誌, vol. 213, pp. 171-176, 2004.
[70] B. S. Kim and S. J. Hong, "Actinometric Investigation of In-Situ Optical Emission Spectroscopy Data in SiO2 Plasma Etch," Transactions on Electrical and Electronic Materials, vol. 13, pp. 139-143, 2012.
[71] K. J. Clay, S. P. Speakman, G. A. J. Amaratung, and S. R. P. Silva, "Characterization of C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy," Journal of Applied Physics, vol. 79, pp. 7227-7233, 1996.
[72] R. Bogdanowicz, "Investigation of H2:CH4 Plasma Composition by Means of Spatially Resolved Optical Spectroscopy," Acta Physica Polonicaa, vol. 114, pp. 33-38, 2008.
[73] J. C. P. Barbosa, D. C. Braz, A. N. Filho, R. C. S. Rocha, and C. Alves, "Non-linearity of N2-Ar-H2 Plasma monitored by OES " Revista Brasileira de Aplicações de Vácuo, vol. 29, pp. 67-69, 2010.
[74] R. Bogdanowicz, L. Golunski, and M. Sobaszek, "Spatial characterization of H2:CH4 dissociation level in microwave ECR plasma source by fibre-optic OES," The European Physical Journal Special Topics, vol. 222, pp. 2223-2232, 2013.
[75] V. A. Krivchenko, V. V. Dvorkin, N. N. Dzbanovsky, M. A. Timofeyev, A. S. Stepanov, A. T. Rakhimov, N. V. Suetin, O. Y. Vilkov, and L. V. Yashina, "Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge," Carbon, vol. 50, pp. 1477-1487, 2012.
[76] J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J. C. Charlier, "Root-Growth Mechanism for Single-Wall Carbon Nanotubes," Carbon, vol. 87, pp. 277054-277057, 2001.
[77] Y. Chen and J. Zhang, "Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles," Carbon, vol. 49, pp. 3316-3324, 2011.