簡易檢索 / 詳目顯示

研究生: 李怡慧
論文名稱: Combined Molecular Mechanics / Molecular Dynamics Simulation for Interactions between Single-walled Carbon Nanotube and Poly(3-hexylthiophene)
指導教授: 蘇安仲
口試委員: 楊小青
王嘉興
蘇安仲
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 34
中文關鍵詞: P3HTSWCNT
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Previous studies from a macroscopic point of view have indicated that minor incorporation of single-walled carbon nanotubes (SWCNT) may result in enhanced crystallinity development as well as increased charge mobility in poly(3-hexylthiophene) (P3HT) thin films. However, the molecular origin is not fully understood although adsorption of P3HT onto SWCNT to serve as heterogeneous nucleation sites is intuitively a possible explanation. The aim of this study is to explore the interac-tion between SWCNT and P3HT chains from a microscopic point of view via molecular mechan-ics/dynamics simulation. We use molecular mechanics (MM) calculation to firstly explored interac-tion between oligothiophene (electron-rich) and π-conjugated system on graphene sheet (elec-tron-poor). Our approach is illustrated by a contacting model, in which we examine the variation of the potential energy with inter-molecular distance and rotational angle between tetrathiophene and SWCNT. Furthermore, in order to understand energetic contribution by alkyl arm-SWCNT or by backbone-SWCNT interactions to poly(3-alkylthiophene) (P3AT) adsorption, we study the variation of adsorption with rotational angle between P3AT and SWCNT, comparing with adsorption between PT and SWCNT. We also use an NPT ensemble under DREIDING force field and periodic boundary conditions with an MD box containing 6548 atoms at 300 K and at 450 K via the molecular dynamics (MD) simulation to simulate the interaction between P3HT and SWCNT.
    The MM and MD results indicate that P3HT chain segments indeed tend to be adsorbed (at a molecular separations less than 4 Å due to π-π interaction without chiral preference) onto SWCNT; this is more clearly observed at the higher temperature 450 K (where higher mobility facilitates ad-justment of molecular rearrangement), which is closer to empirical observation of Tc = 473 K. Be-sides, we observed sulfur atoms (possessing lone-pair electrons) tend to sit on top of the 6-membered conjugated ring (electron deficiency) center of the SWCNT due to lone-pair/π interac-tion; consequently the bending angles of adsorbed S−C−C on backbone tends to be concentrated around 120˚. Finally, for the general case of P3AT with long side-chains, lowered energy barriers were observed to indicate adsorption on SWCNT without orientation preference. In particular, for side-chains containing more than 8 carbons, the energetic contribution by alkyl arm-SWCNT inter-actions to P3AT adsorption may outweigh those from thiophene ring-SWCNT interactions.


    ABSTRACT I List of Tables IV List of Figure IV 1. Background 1 1.1. Introduction 1 1.2. Unresolved Issue 10 1.3. Objectives and Approach 10 2. Simulation Methods 11 2.1. Materials Studio® 11 2.2. Force Field 11 2.2.1. DREIDING Force Field 11 2.3. Interaction Energy 12 2.3.1. P3HT Chains and SWCNT 12 2.3.2. P3HT Backbone and Side-chains 12 2.4. Systems 12 2.4.1. Molecular Mechanics (MM) Systems 12 2.4.2. Molecular Dynamics (MD) Systems 14 2.4.3. Molecular Dynamics Simulation Process 14 3. Result and Discussion 16 3.1. Tetrathiophene/Graghene Sheet Interaction 16 3.2. Effect of Alkyl Arm Length 17 3.3. Total Potential Energy between P3HT and SWCNT 21 3.4. P3HT Adsorption 23 3.4.1. Interaction Energy 25 3.4.2. Number of Adsorbed P3HT Segments 25 3.4.3. Radial Distribution Function 26 3.5. Influence by Adsorption 27 3.5.1. Torsion-angle Study on Backbone ( θ1: S−C−C−S) 27 3.5.2. Bending Angle Study ( α: S−C−C) 28 3.5.3. Conformation of Side-chains 30 4. Conclusion 32 References 33

    1. Koezuka, H.; Tsumura, A.; Ando, T. Synth. Met. 1987, 18, 699-704.
    2. Tsumura, A.; Koezuka, H.; Ando, T. Synth. Met. 1988, 25, 11-23.
    3. Bao, Z.; Lovinger, A. J. Chem. Mater. 1999, 11, 2607-2612.
    4. Berson, S.; de Bettignies, R.; Bailly, S.; Guillerez, S.; Jousselme, B. Adv. Funct. Mater. 2007, 17, 3363-3370.
    5. Kanai, Y.; Grossman, J. C. Nano Lett. 2008, 8, 908-912.
    6. Liu, Q.; Liu, Z.; Zhang, X.; Yang, L.; Zhang, N.; Pan, G.; Yin, S.; Chen, Y.; Wei, J. Adv. Funct. Mater. 2009, 19, (6), 894-904.
    7. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864-868.
    8. Iijima, S. Nature 1991, 354, 56-58.
    9. Liao, K.; Li, S. Appl. Phys. Lett. 2001, 79, (25), 4225-4227.
    10. Wei, C.; Srivastava, D.; Cho, K. Nano Lett. 2004, 4, (10), 1949-1952.
    11. Tsukamoto, J.; Mata, J. Jpn. J. Appl. Phys. 2004 43, L214- L216.
    12. Geng, J.; Zeng, T. J. Am. Chem. Soc. 2006, 128, 16827-16833.
    13. Brosse, A.-C.; Tencé-Girault, S.; Piccione, P. M.; Leibler, L. Poly 2008, 49, (21), 4680-4686.
    14. Tameev, A. R.; Pereshivko; Vannikov, A. V. MCLC 2008, 497, 1-6.
    15. Cadek, M.; Coleman, J. N.; Barron, V.; Hedicke, K.; Blau, W. J. Appl. Phys. Lett. 2002, 81, (27), 5123-5125.
    16. Yang, M.; Koutsos, V.; Zaiser, M. J. Phys. Chem. B 2005, 109, (20), 10009-10014.
    17. Al-Haik, M.; Hussaini, M. Y.; Garmestani, H. J. Appl. Phys. 2005, 97, (7), 074306-5.
    18. Tallury, S. S.; Pasquinelli, M. A. J. Phys. Chem. B 2010, 114, (12), 4122-4129.
    19. Tallury, S. S.; Pasquinelli, M. A. J. Phys. Chem. B 2010, 114, (29), 9349-9355.
    20. Caddeo, C.; Melis, C.; Colombo, L.; Mattoni, A. J. Phys. Chem. C 2010, 114, 21109-21113.
    21. Kanai, Y.; Grossman, J. C. Nano Lett. 2007, 7, 1967-1972.
    22. Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; Park, J. J.; Spakowitz, A.; Galli, G.; Gygi, F.; Wong, P. H. S.; Tok, J. B. H.; Kim, J. M.; Bao, Z. Nat. Commun. 2011, 2, 541.
    23. Mena-Osteritz, E.; Meyer, A.; Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W.; Bäuerle, P. Angew. Chem. Int. Ed. 2000, 39, (15), 2679-2684.
    24. Harris, P. J. F. Int. Mater. Rev. 2004, 49, (1), 31-43.
    25. Haggenmueller, R.; Fischer, J. E.; Winey, K. I. Macromolecules 2006, 39, (8), 2964-2971.
    26. Kavassalis, T. A.; Sundararajan, P. R. Macromolecules 1993, 26, (16), 4144-4150.
    27. Venema, L. C.; Meunier, V.; Lambin, P.; Dekker, C. Phys. Rev. B 2000, 61, 2991.
    28. McCullough, R. D. Adv. Mater. 1998, 10, 93-116.
    29. Lan, Y.-K.; Huang, C.-I. J. Phys. Chem. B 2008, 112, 14857-14862.
    30. Darling, S. B.; Sternberg, M. J. Phys. Chem. B 2009, 113, (18), 6215-6218.
    31. Tashiro, K.; Ono, K.; Minagawa, Y.; Kobayashi, K.; Kawai, T.; Yoshino, K. Synth. Met. 1991, 41, (1–2), 571-574.
    32. Jensen, F., Introduction to Computational Chemistry. Second Edition ed.; John Wiley & Sons, Ltd: 2007; p 624.
    33. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897-8909.
    34. Gallivan, J. P.; Dougherty, D. A. Org. Lett. 1999, 1, (1), 103-106.
    35. Egli, M.; Sarkhel, S. Acc. Chem. Res. 2006, 40, (3), 197-205.
    36. Mooibroek, T. J.; Gamez, P.; Reedijk, J. CrystEngComm 2008, 10, (11), 1501-1515.
    37. Jain, A.; Ramanathan, V.; Sankararamakrishnan, R. Protein Sci. 2009, 18, (3), 595-605.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE