研究生: |
黃律翔 Huang, Lu-Hsiang |
---|---|
論文名稱: |
含孔洞的熱電材料碲化鉍之熱應力集中的有限單元法分析 Thermal Stress Concentration Analysis of a Void in Bismuth Telluride by Finite Element Method |
指導教授: |
蔣長榮
Chiang, Chun-Ron |
口試委員: |
葉孟考
Yeh, Meng-Kao 李昌駿 Lee, Chang-Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 熱電材料 、有限單元法 、應力集中 、含孔洞 、熱應力 、熱固耦合分析 、熱電固耦合分析 |
外文關鍵詞: | Thermoelectric Material, Finite Element Method, Stress Concentration, Void, Thermal Stress, Structure-thermal coupled analysis, Structure-thermoelectric coupled analysis |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用有限單元法(Finite Element Method)分析軟體ANSYS,去探討孔洞(Void)對於半導體熱電材料碲化鉍(Bismuth Telluride)在其最大產能密度下時的局部熱應力的影響,由於熱電材料的溫差會產生電壓差,從而產生電流,而電流通過材料內部會因為電阻而產生熱,故吾人去分析熱應力值的變化時,除了溫差所產生的熱通量外,也要考慮電阻所產生的熱對於應力值的變化。
本文在邊界條件上不考慮外界對碲化鉍的應力影響,專注考慮上下側溫差對其孔洞的熱應力影響,並且將問題分為: (一)熱固耦合分析及(二)熱電固耦合分析兩種情況,來分析孔洞的熱應力變化,並且比較兩種的情況。
結果發現,應力主要集中在孔洞邊緣θ = 90°與270°處,分別為壓應力及張應力,而在熱電固耦合時會有額外的壓應力。熱固耦合時,溫度場為線性,而在熱電固耦合時溫度場為非線性。而且我們發現,含孔洞的立體塊狀,與含孔洞的平板的應力值有某些關聯。另外溫差不大時,可用熱固耦合分析代表熱電固耦合分析的結果。
In this study, the computer software ANSYS has been used to investigate the effect of the thermal stress of a void in Bismuth Telluride under its working conditions. Since the temperature difference in a semiconductor thermoelectric material is accompanied by an electric potential difference, and result in electric current, the heat will be generated by the electric resistance. Therefore, when we analyze the thermal stress in semiconductor thermoelectric material, in addition to the heat flux due to the temperature difference between the boundaries, the contribution from the Joule heating should also be considered.
In this paper, the influence of the external stress is not considered in the boundary conditions. We focus on the effect of the thermal stress due to the temperature difference between the upper and lower sides. The problem is studied by two approaches: Structure-thermal coupled analysis and Structure-thermoelectric coupled analysis. The thermal stress concentrations at the void are determined and compared by using these two approaches.
It is found that the local thermal stress is mainly concentrated at the edge of the void θ = 90° and 270°, which are compressive stress and tensile stress, respectively. And there is additional compressive stress in the Structure-thermoelectric coupled analysis. The temperature field of Structure-thermal coupled analysis is linear, and the Structure-thermoelectric coupled analysis is nonlinear. Moreover, we have found that the stress value of the three-dimensional block containing the void has some correlation with the plate containing the void. In addition, when the temperature difference is not large, Structure-thermal coupled analysis can be used to represent the results of the Structure-thermoelectric coupled analysis.
簡東甫,奈米尺度晶粒之碲化鉛薄膜的超低熱傳導率,碩士論文,機械工程系所,國立交通大學,新竹市,2013。
[2] 精工控股股份公司: http://www.seikowatches.com/,Seiko Holdings Co., INC, 1998
[3] 周寧,ANSYS機械工程應用實例,中國水利水電出版社, 2006。
[4] T. J. Seebeck, Magnetische polarization der metalle und erzedurch temperature-differenze, Abhand deut, Akad. Wiss. Berlin, 1821.
[5] 中興大學材料科學與工程學系,材料介面科技實驗室: http://web.nchu.edu.tw/~lschang/Thermoelectric.htm, retrieved on December, 2018.
[6] Big-List.com, Used Test Equipment, Semiconductor Production Equipment & Lab Equipment Dealer Directory: http://www.peltier-info.com/photos.html, retrieved on December, 2018.
[7] 劉倡宜,碲化鉍合金薄膜熱電元件的開發,碩士論文,機械工程學研究所,國立臺灣大學,臺北市,2015。
[8] E. Altenkirch, “Physikalische Zeitschrift”, Vol. 10, pp. 560–580, 1909.
[9] A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen,“Bulk nanostructured thermoelectric materials: current research and future prospects,”Energy & Environmental Science, Vol. 2, pp. 466-479, 2009.
[10] 工業材料雜誌,第298期,2011。
[11] 王斐治,含邊緣裂縫之複合材料平板在板面受熱對流影響下之應力分析,碩士論文,動力機械工程學系,國立清華大學,新竹市,2013。
[12] 施峻源,含邊緣裂縫之纖維複合材料平板在板面受熱通量 影響下之熱應力分析,碩士論文,動力機械工程學系,國立清華大學,新竹市,2014。
[13] 吳亭瑩,熱電致冷器熱變形之實驗與數值探討,碩士論文,動力機械工程學系,國立清華大學,新竹市,2010。
[14] 陳建良,熱電致冷器熱變形之探討,碩士論文,動力機械工程學系,國立清華大學,新竹市,2012。
[15] A.S. Al-Merbati, B.S.Yilbas and A.Z. Sahin,“Thermodynamics and thermal stress analysis of thermoelectric power generator: Influence of Pin geometry on device performance,”Applied Thermal Engineering, Vol. 50, pp. 683-692, 2013.
[16] J. L. Gao, Q. G. Du, X. D. Zhang and X. Q. Jian,“Thermal Stress Analysis and Structure Parameter Selection for a Bi2Te3-Based Thermoelectric Module,”Journal of Electronic Materials, Vol. 40, pp. 884-888, 2011.
[17] J. H. Lienhard, A Heat Transfer Textbook, 3rd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 2013.
[18] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., 1970.
[19] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
[20] Elena E. Antonova and David C. Looman,“Finite elements for thermoelectric device analysis in ANSYS,”IEEE 24th International Conference on Thermoelectrics, pp. 200-203, 2005.
[21] L. D. Landau and E. M. Lifshitz, ElectrodyContinuous Media, 2nd ed., Butterworth-Heinemann, Oxford, 1984.
[22] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed., University Press, Cambridge, 1996.
[23] ANSYS Inc. PDF Documentation for Release 15.0, 2014.
[24] 劉晉奇、褚晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
[25] 朱旭山,熱電材料與元件之原理與應用,工業材料雜誌, 2005。
[26] K. Biswas, M. S. Good, K. C. Roberts, M. A. Subramanian, and T. J. Hendricks,“Thermoelectric and structural properties of high-performance In-based skutterudites for high-temperature energy recovery,”Journal of Materials Research, Vol. 26, pp. 1827-1835, 2011.
[27] A. A. Wereszczak , H. Wang, R McCarty and J.sharp “Thermoelectric Mechanical Reliability,”Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting, Arlington, 2011.
[28] Y. Li, X.Q. Yang, P.C. Zhai, Q.J. Zhang,“Thermal stress simulation and optimum design of CoSb3/Bi2Te3 thermoelectric unicouples with graded interlayers,”AIP Conference Proceedings, Vol. 973 , pp. 297-302, 2008.