簡易檢索 / 詳目顯示

研究生: 曾楷涵
Tseng, Kai-Han
論文名稱: 利用外差式光學偏光儀研究三氟乙醇與甘油對膠原蛋白熱變性之影響
Using Heterodyne optical polarimeter to study the effect on thermal denaturation of Collagen with Trifluoroethanol and Glycerol
指導教授: 吳見明
Wu, Chen-Ming
口試委員: 郭文娟
崔豫笳
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 膠原蛋白三氟乙醇甘油旋光外差式光學偏光儀熱變性
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,有許多的量測方法皆可用來研究蛋白質在加熱後其結構之變化,例如差分掃描法、圓偏振二色光譜法、X-ray 晶格繞射法等等,但這些方法皆無法即時量測出蛋白質水溶液在加熱後結構的快速變化。因此本研究使用具有放大旋光訊號效果約40倍的自製光學外差式偏光儀,以及精密的熱電致冷晶片溫度控制器,設計了四部份的實驗來詳細探討膠原蛋白溶液在加熱後的熱變性現象。
    實驗結果指出,膠原蛋白溶液從室溫25oC加熱至55oC時,在40.2±0.2°C 會產生明顯的熱變性現象,當從55oC降溫回25oC時,約66%的結構再度摺疊回三股螺旋的形式。而膠原蛋白溶液之濃度、加熱系統之加熱速度雖然皆會些許的影響其變性溫度,但皆不是影響蛋白質實際變性溫度的主要因素。加入不同濃度的三氟乙醇(TFE)後,可以觀察到初始旋光數值的降低及變性溫度的提前,皆可證明TFE對膠原蛋白結構的破壞,且當濃度到達20%(v/v)後,TFE對膠原蛋白的作用似乎到達飽和。最後,當加入不同濃度的甘油以及不同濃度的TFE後,其結果可以觀察出在不同濃度的TFE下,甘油濃度提高,保護效果越顯著,而在相同濃度的甘油下,TFE濃度越高,變性溫度延後量越大。此結果與其他文獻使用不同研究方法結果吻合。


    Recently, many measurement methods have been used to study the structure change of protein after heating, such as differential scanning method, circularly polarized dichroism spectroscopy, X-ray diffraction crystallography method, etc. However, it is difficult for these methods to monitor the denaturation process of collagen solution in real time. In this study, a self-assembled optical heterodyne polarimeter that was capable of amplifying the optical rotation signal to 40-fold, and a precision thermoelectric cooler (TEC) were used to study the thermal denaturation phenomenon of collagen solution after heating.
    Our results indicated that when collagen solution was heated from 25oC to 55°C, the thermal denaturation was at 40.2±0.2°C. When the collagen solution was cooled from 55°C to 25oC, about 66% of its structure was refolded back to triple helix again. However, both the concentration of the aqueous protein solution and the rate of heating with TEC system have some effects on the processes of denaturation, but they are not the main factors.
    When collagen solution was mixed with Trifluoroethanol(TFE), we observed that the initial optical rotation value and the denaturation temperature were both decreased. This suggests that TFE will destroy the structure of collagen. Moreover, the destruction was saturated after the concentration of TFE exceeds 20% (v/v). At last, we added glycerol in the mixed solution of TFE and collagen. We observed that the denaturation temperature was increased when more glycerol was added. At high concentration of TFE, the protective effect is more significant than in low concentration. Not only these results can be applied to the processing of many proteins, but also are consistent with other studies using different methods. 

    摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 5 1.2.1 X-ray 晶格繞射 5 1.2.2 圓偏振二色光譜 7 1.2.3 差分掃描量熱法 10 1.2.4 光學活性與旋光現象 12 1.2.5 旋光量測 14 1.2.6 蛋白質電泳法 17 1.3 研究目的 18 第二章 研究與方法 20 2.1 外差式光學偏光系統之原理與架構 20 2.2 旋光角度放大機制 23 2.3 訊雜比量測 26 2.4 加熱系統之加熱原理、設計與性能 29 2.4.1 熱電致冷晶片原理 29 2.4.2 加熱系統之設計與性能 31 2.5 實驗樣品的配置 37 2.6 熱變性旋光量測設計與流程 39 第三章 實驗結果與討論 43 3.1 旋光性量測實驗 43 3.2 膠原蛋白熱變性實驗 46 3.3 加入不同TFE濃度下的膠原蛋白熱變性實驗 60 3.4 加入不同濃度的甘油下的熱變性實驗 70 第四章 結論 78 第五章 未來與展望 81 參考文獻 82

    1. Muller, W.E.G., The origin of metazoan complexity: Porifera as integrated animals. Integrative and Comparative Biology, 2003. 43(1): p. 3-10.
    2. Di Lullo GA, S.S., Korkko J, Ala-Kokko L, San Antonio JD, Mapping the Ligand-binding Sites and Disease-associated Mutations on the Most Abundant Protein in the Human, Type I Collagen. The Journal of biological chemistry, 2002. 277: p. 4223-4231.
    3. Ramachandran, G.N. and G. Kartha, Structure of collagen. Nature, 1954. 174(4423): p. 269-70.
    4. Ramachandran, G.N. and G. Kartha, Structure of collagen. Nature, 1955. 176(4482): p. 593-5.
    5. Szpak, P., fish bone chemistry and ultrastructure : implications for taphonomy and stable isotopre analysis. journal of archaeological science, 2011. 38: p. 3358-3372.
    6. Shoulders, M.D. and R.T. Raines, Collagen structure and stability. Annu Rev Biochem, 2009. 78: p. 929-58.
    7. Shoulders, M.D., K.J. Kamer, and R.T. Raines, Origin of the stability conferred upon collagen by fluorination. Bioorganic & Medicinal Chemistry Letters, 2009. 19(14): p. 3859-3862.
    8. Macdonald, J.R. and H.P. Bachinger, HSP47 binds cooperatively to triple helical type I collagen but has little effect on the thermal stability or rate of refolding. Journal of Biological Chemistry, 2001. 276(27): p. 25399-25403.
    9. Beck, K. and B. Brodsky, Supercoiled protein motifs: The collagen triple-helix and the alpha-helical coiled coil. Journal of Structural Biology, 1998. 122(1-2): p. 17-29.
    10. http://commons.wikimedia.org/.
    11. Leikina, E., et al., Type I collagen is thermally unstable at body temperature. PNAS, 2001. 99: p. 1314-1318.
    12. Kongraksawech, T., Characterization by optical methods of the heat denaturation of bovine serum albumin (BSA) as affected by protein concentration, pH, ionic strength and sugar concentration. Food Science and Technology, 2006.
    13. Bégué, J.-P., D. Bonnet-Delpon, and B. Crousse, Fluorinated Alcohols: A New Medium for Selective and Clean Reaction. Synlett, 2004. 1: p. 18-29.
    14. Shuklov, I.A., N.V. Dubrovina, and A. Boerner, Fluorinated alcohols as solvents, cosolvents and additives in homogeneous catalysis. Synthesis-Stuttgart, 2007. 19(19): p. 2925-2943.
    15. Ravikumar, K.S., et al., Mild and Selective Oxidation of Sulfur Compounds in Trifluorethanol: Diphenyl Disulfide and Methyle Phenyl Sulfoxide. Organic syntheses, 2003. 80: p. 184.
    16. Buck, M., Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys, 1998. 31(3): p. 297-355.
    17. S, Z., et al., Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules, 2005. 6: p. 2998-3004.
    18. Zhong, S.P., et al., Development of a novel collagen-GAG nanofibrous scaffold via electrospinning. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007. 27(2): p. 262-266.
    19. DI, Z., et al., Electro-spinning of pure collagen nano-fibres - just an expensive way to make gelatin? biomaterials, 2008: p. 2293-2305.
    20. Sönnichsen, F.D., et al., Effect of Trifluoroethanol on Protein Secondary Structure: An NMR and CD Study using a Synthetic Actin Peptide. biochemistry, 1992. 31: p. 8790-8798.
    21. Blanco, F.J., et al., NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry, 1994. 33(19): p. 6004-14.
    22. A, G.v.S., et al., Solvent polarity-dependent structural refolding: a CD and NMR study of a 15 residue peptide. Proteins, 1995. 23: p. 196-203.
    23. Sivaraman, T., T.K.S. Kumar, and C. Yu, Destabilisation of native tertiary structural interactions is linked to helix-induction by 2,2,2-trifluoroethanol in proteins. International Journal of Biological Macromolecules, 1996. 19(4): p. 235-239.
    24. W, L., P. JM, and B. HW., Amyloid fibril formation by peptide LYS (11-36) in aqueous trifluoroethanol. Biomacromolecules, 2004. 5(5): p. 1818-1823.
    25. Dong, A., et al., Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study. Arch Biochem Biophys, 1998. 355(2): p. 275-81.
    26. Shanmugam, G., et al., 2,2,2-Trifluoroethanol disrupts the triple helical structure and self-association of type I collagen. Int J Biol Macromol, 2013. 54: p. 155-9.
    27. Sangeetha, S., et al., Enhancing collagen stability through nanostructures containing chromium(III) oxide. Colloids and Surfaces B-Biointerfaces, 2012. 100: p. 36-41.
    28. nski, S.S., A. Sionkowska, and A.Marciniak, DSC Study of Collagen in Disc Disease. Journal of Biophysics, 2009.
    29. Chen, C.-C., et al., Contributions of cation–p interactions to the collagen triple helix stability. Archives of Biochemistry and Biophysics, 2010. 508: p. 46-53.
    30. Attfield, J.P., A.W. Sleight, and A.K. Cheetham, Structure determination of α-CrPO4 from powder synchrotron X-ray data. Nature, 1986. 322: p. 620-622.
    31. Tsukihara, T., et al., Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science, 1995. 269(5227): p. 1069-74.
    32. Antonov, Y.A. and B.A. Wolf, Calorimetric and structural investigation of the interaction between bovine serum albumin and high molecular weight dextran in water. Biomacromolecules, 2005. 6(6): p. 2980-2989.
    33. Yamada, K., et al., Conformation of the transmembrane domains in peripheral myelin protein 22. Part 1. Solution-phase synthesis and circular dichroism study of protected 17-residue partial peptides in the first putative transmembrane domain. J Pept Res, 2003. 62(2): p. 78-87.
    34. Mackenzie, R.C., Nomenclature in Thermal-Analysis .4. Thermochimica Acta, 1979. 28(1): p. 1-6.
    35. Oldfield, D.J., H. Singh, and M.W. Taylor, Kinetics of heatinduced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. J. Dairy Research, 2005. 72: p. 369-378.
    36. Gratzer, W.B. and D.A. Cowburn, Optical activity of biopolymers. Nature, 1969. 222(5192): p. 426-31.
    37. Tiffany, M.L. and S. Krimm, Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers, 1972. 11(11): p. 2309-16.
    38. Caldwell, D.J. and H. Eyring, The Theory of Optical Activity. New York: Wiley-Interscience, 1971.
    39. Hecht, E., Optics, 4ed, ch8. 2002, New York: Addison Wesley.
    40. King, T.W. and G.L. Cote, Closed-Loop Polarimetric Glucose Sensing Using the Pockels Effect. Proceedings of the Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vol 14, Pts 1-7, 1992. 14: p. 161-162.
    41. Silverman, M.P., et al., Experimental Configurations Using Optical-Phase Modulation to Measure Chiral Asymmetries in Light Specularly Reflected from a Naturally Gyrotropic Medium. Journal of the Optical Society of America a-Optics Image Science and Vision, 1988. 5(11): p. 1852-1862.
    42. Majewski, A.J., et al., Effects of ultraviolet radiation on the type-I collagen protein triple helical structure: A method for measuring structural changes through optical activity. Physical Review E, 2002. 65(3): p. 319-328.
    43. COHEN, C., OPTICAL ROTATION AND HELICAL POLYPEPTIDE CHAIN CONFIGURATION IN COLLAGEN AND GELATIN. J. BIOI~KYSIC. AND BIOCHEM. CYTOL, 1954. 1: p. 203-214.
    44. DUAN, R., et al., DIFFERENT THERMOSTABILITY OF COLLAGENS FROM SCALE OF CARP (CYPRINUS CARPIO) IN WINTER AND SUMMER. Journal of Food Biochemistry, 2009. 34: p. 1275-1287.
    45. 陳欣樂, 小牛血清蛋白熱變性之旋光研究, in 生醫工程與環境科學所2009, 國立清華大學.
    46. Mu, C., et al., Temperature induced Ddenaturation of collagen in acidic solution. BIOPOLYMERS, 2007. 86: p. 282-287.
    47. McClain, P.E. and E.R. Wiley, Differential Scanning Calorimeter studies of the thermal transitionof collagen : Implications on structure and stability. J Biol., 1972: p. 692-697.
    48. Bowes, J.H. and R.H. Kenten, Some Observations on the Amino-Acid Distribution of Collagen, Elastin and Reticular Tissue from Different Sources. Biochemical Journal, 1949. 45(3): p. 281-285.
    49. RAJAN, R. and P. BALARAM, A model for the interaction of trifluoroethanol with peptides and proteins. International Journal of Peptide and Protein Research, 2009. 48(4): p. 328-336.
    50. MJ, B. and G. JM., Hydrophobic solvation in aqueous trifluoroethanol solution. BIOPOLYMERS, 1996. 39: p. 43-50.
    51. Ramshaw, J.A.M., N.K. Shah, and B. Brodsky, Gly-X-Y tripeptide frequencies in collagen: A context for host-guest triple-helical peptides. Journal of Structural Biology, 1998. 122(1-2): p. 86-91.
    52. Penkova, R., et al., Stability of collagen during denaturation. Journal of Protein Chemistry, 1999. 18(4): p. 397-401.
    53. Na, G.C., Interaction of Calf Skin Collagen with Glycerol - Linked Function-Analysis. Biochemistry, 1986. 25(5): p. 967-973.
    54. Penkova, R., et al., Stabilizing e€ect of glycerol on collagen type I isolated from di€erent species. food chemistry, 1999. 66: p. 483-487.
    55. Li, J.H. and G.Y. Li, The thermal behavior of collagen in solution: Effect of glycerol and 2-propanol. International Journal of Biological Macromolecules, 2011. 48(2): p. 364-368.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE