簡易檢索 / 詳目顯示

研究生: 鄭伊芸
Cheng, Yi-Yun
論文名稱: 以高構形同質之果蠅腦型脂肪酸結合蛋白鑑定其於生物膜間的受質運輸特性
Enriched Conformational Homogeneity of Drosophila Brain-Type Fatty Acid-Binding Protein Reveals Ligand-Induced Control over Protein-Membrane Affinity Suggesting the Mechanism of Ligand Extraction from Membranes
指導教授: 呂平江
Lyu, Ping-Chiang
張文祥
Chang, Wayne Wun-Shaing
口試委員: 徐尚德
Hsu, Danny Shang-Te
鄭惠春
Cheng, Hui-Chun
余慈顏
Yu, Tsyr-Yan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 124
中文關鍵詞: 脂肪酸結合蛋白受質運輸生物膜交互作用奈米脂肪盤異核單量子相關譜結晶學
外文關鍵詞: FABP, Ligand transport, Membrane interaction, Nanodiscs, HSQC, Crystallography
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脂肪酸結合蛋白(FABPs)為一群受質廣泛、結構同源的動物性小形護送蛋白質。除哺乳類動物細胞中具組織特異性外,腦型脂肪酸結合蛋白近期於模式生物的細胞、及動物行為研究中,被發現與記憶固化相關。過去數十年,獲取較高構形同質性之脂肪酸結合蛋白、以進行結構為主之研究的優化程序一直存有困擾;因此,瞭解脂肪酸結合蛋白於生物膜之間的作用、及運輸受質的方向之細部機制,仍具挑戰性。於此,吾人使用基因重組之果蠅腦型脂肪酸結合蛋白 B 型異構(dFABP)作為模型蛋白質,以研究尿素(urea)純化中併入、或無併入低濃度鹽酸胍(GuHCl),其同質構形-異質構形之平衡狀態。實驗發現,重複使用鹽酸胍的步驟,可成功獲得高構形同質之 dFABP,以利進一步分析以結構為主的功能性研究。為得此結論,吾人將遠紫外光圓形光譜儀、與內源性螢光所測之熱穩定性作比較;於受質滴定實驗中,氮同位素標記之異核單量子相干磁共振光譜進一步支持,經鹽酸胍純化所得之 dFABP,其構形變化與生化檢驗變化一致。此外,比較晶體結構而得之位置型水分子,顯示鹽酸胍純化所得的蛋白質結構,有較接近空的蛋白質型態,而使以結構為基礎的功能性研究更接近真實。較高的構形同質性可藉由生物膜模擬物–磷脂奈米盤(nanodisc),揭露脂肪酸、果蠅脂肪酸結合蛋白、與膜間之交互作用,窺知 dFABP 將受質由膜上攜出、並自膜解離,以進行核膜轉運的可能機制。此一關鍵資訊能支持未來多種脂肪酸結合蛋白之研究,例如:FABP 的主動運輸、以將脂肪酸結合蛋白轉入細胞核,及 FABP 與細胞核內接受器作用、以調控基因。


    Fatty acid-binding proteins (FABPs) belong to a group of small escort proteins sharing structural homology with broad binding specificity in animal. In addition to their tissue specificity in mammalian cells, brain-type FABP in model animal have been investigated to be related to memory consolidation in cellular and animal behavior studies currently. It has been puzzled with optimization procedures of higher conformational homogeneous FABPs for structure-based study over decades. Thus, the detailed mechanism for ligand transport and its direction among membranes escorted by FABPs remains challenging. Herein, we employed recombinant Drosophila brain-type FABP isoform B (dFABP) as a model protein to study its homogeneous-heterogeneous equilibrium in the presence or absence of low concentration of guanidine hydrochloride (GuHCl) in combination with urea unfolding purification procedure. We found the repeated treatment with GuHCl allowed dFABP to be successfully purified with higher homogeneity that would enable analyses of structure-based functionality. To draw this conclusion, thermal stabilities were compared by far-UV circular dichroism (CD) and intrinsic fluorescence. The 1H-15N heteronuclear single quantum coherence spectra (HSQC) upon ligand titration is further supported the conclusion that the structural change is consistent with biochemical assay in GuHCl-purified dFABP. Besides, the comparison of positional water molecules from crystal structures claims that the structure of GuHCl purification possesses substantial apo-dFABP, which would be more authentic for structural based unctional research. With unraveling the relationship of interaction among ligand-dFABP- membrane by membrane mimetic lipid nanodiscs, higher conformational homogeneity gave a glimpse to the mechanism that ligand may be transferred from membrane by dFABP and dissociated together for further nucleo-cytoplasmic trafficking. This critical information will subsequently support copious FABP studies such as active transport for FABP nuclear translocation and interaction of FABP with nuclear receptors for gene regulation.

    LIST OF ABBREVIATIONS & KEY WORDS 8 LIST OF TABLES 11 LIST OF FIGURES 12 CHAPTER I. BACKGROUND AND OBJECTIVES 14 1. Overview of fatty acid-binding proteins (FABPs) 14 1.1 FABP research history 14 1.2 Biological function 14 1.3 Molecular structure 15 1.4 Metabolism of fatty acids 16 2. Drosophila brain-type fatty acid-binding protein (dFABP) 17 2.1 Memory study in Drosophila melanogaster 17 2.2 Characteristics of dFABP 18 3. General working hypotheses of FABPs 18 3.1 Collisional type FABPs 18 3.2 Hypotheses of ligand entry and membrane interactions 19 4. Structure based study on dFABP and membrane 19 4.1 Principles of protein crystallography 19 4.2 Applications of NMR experiments in solution biomolecules 20 4.3 Instrumentation 22 4.3.1 Synchrotron radiation for bio-crystallography 22 4.3.2 Modern NMR equipment 22 4.4 Membrane mimetic nanodiscs 23 5. Project objective: Interaction relationship among dFABP, ligand and membrane 23 CHAPTER II. MATERIALS AND METHODS 34 Materials 34 Methods 34 1. Protein expression and purification 34 1.1 Cloning, mutagenesis and protein expression 34 1.2 Cell lysis and protein purification 35 1.3 Purity and MS analysis of hydrophobic remnants 36 1.4 Alternative failed strategies 37 2. Experiments of biophysical spectrometry 38 2.1 Circular dichroism spectrometry 38 2.2 Intrinsic fluorescence spectrometry 39 2.3 Crystallography experiments 39 2.4 NMR experiments 40 2.4.1 Sample preparation 41 2.4.2 HSQC 41 2.4.3 TROSY 42 2.4.4 H/D exchange 42 3. Nanodiscs preparation for NMR titration 43 4. Data analyses 44 4.1 Chemical shift perturbation 44 4.2 One phase decay model 44 CHAPTER III. RESULTS 57 1. Different levels of conformational homogeneity 57 1.1 Chromatography and mass spectroscopy 57 1.2 Thermal stability 58 1.3 Ligand binding and titration 59 1.3.1 Ligand binding assays 59 1.3.2 Ligand titration via HSQC 59 1.4 Crystal structures of dFABP 60 2. Mutant R30A in helix 2 of dFABP 62 2.1 Intrinsic fluorescence 62 2.2 H/D exchange comparison 62 3. Membrane interaction 62 3.1 Lipid nanodiscs 63 3.2 Apo and OA liganded holo-dFABP 63 CHAPTER VI. DISCUSSION 108 1. Revisit thermal stability of FABPs 108 2. Relationship between ligand binding and membrane interaction 110 3. The effect of decreased ligand binding affinity of R30A-dFABP 114 CHAPTER V. SUMMARY AND FUTURE PERSPECTIVES 115 APPENDIX 116 i. Ligand binding preference 116 ii. Publication papers 116 REFERENCES 118

    REFERENCES
    1. Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59: 1096-1116
    2. Ockner RK, Manning JA (1974) Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport. J Clin Invest 54: 326-338
    3. Zimmerman AW, van Moerkerk HTB, Veerkamp JH (2001) Ligand specificity and conformational stability of human fatty acid-binding proteins. Int J Biochem Cell B 33: 865-876
    4. Long D, Mu Y, Yang D (2009) Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein. PloS one 4: e6081
    5. Smathers RL, Petersen DR (2011) The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 5: 170-191
    6. Dyszy F, Pinto APA, Araujo APU, Costa AJ (2013) Probing the Interaction of Brain Fatty Acid Binding Protein (B-FABP) with Model Membranes. PloS one 8:
    7. Sacchettini JC, Gordon JI, Banaszak LJ (1989) Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. Journal of molecular biology 208: 327-339
    8. Storch J, Corsico B (2008) The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr 28: 73-95
    9. Lucke C, Zhang FL, Ruterjans H, Hamilton JA, Sacchettini JC (1996) Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure 4: 785-800
    10. Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid-binding protein multigene family: Molecular and genetic insights into function. Trends Endocrin Met 11: 175-180
    11. Amber-Vitos O, Kucherenko N, Nachliel E, Gutman M, Tsfadia Y (2015) The Interaction of FABP with Kapalpha. PloS one 10: e0132138
    12. Gajda AM, Storch J (2015) Enterocyte fatty acid-binding proteins (FABPs): Different functions of liver and intestinal FABPs in the intestine. Prostag Leukotr Ess 93: 9-16
    13. Flower DR (1996) The lipocalin protein family: Structure and function. Biochemical Journal 318: 1-14
    14. Glatz JFC, vanderVusse GJ (1996) Cellular fatty acid-binding proteins: Their function and physiological significance. Prog Lipid Res 35: 243-282
    15. Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J Appl Genetics 47: 39-48
    16. Takaoka N, Takayama T, Teratani T, Sugiyama T, Mugiya S, Ozono S (2011) Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines. Bmc Mol Biol 12:
    17. Toelle A, Krause H, Miller K, Jung K, Stephan C (2011) Importance of brain-type fatty acid binding protein for cell-biological processes in human renal carcinoma cells. Oncol Rep 25: 1307-1312
    18. Correnti C, Clifton MC, Abergel RJ, Allred B, Hoette TM, Ruiz M, Cancedda R, Raymond KN, Descalzi F, Strong RK (2011) Galline Ex-FABP Is an Antibacterial Siderocalin and a Lysophosphatidic Acid Sensor Functioning through Dual Ligand Specificities. Structure 19: 1796-1806
    19. Queipo-Ortuno MI, Escote X, Ceperuelo-Mallafre V, Garrido-Sanchez L, Miranda M, Clemente-Postigo M, Perez-Perez R, Peral B, Cardona F, Fernandez-Real JM, et al. (2012) FABP4 Dynamics in Obesity: Discrepancies in Adipose Tissue and Liver Expression Regarding Circulating Plasma Levels. PloS one 7:
    20. Hu X, Ma XJ, Pan XP, Luo YQ, Xu YT, Xiong Q, Bao YQ, Jia WP (2016) Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels. Sci Rep-Uk 6:
    21. Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7: 489-503
    22. Kaczocha M, Glaser ST, Deutsch DG (2009) Identification of intracellular carriers for the endocannabinoid anandamide. P Natl Acad Sci USA 106: 6375-6380
    23. Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB, Schroeder F (2010) Liver fatty acid-binding protein and obesity. J Nutr Biochem 21: 1015-1032
    24. Kaczocha M, Vivieca S, Sun J, Glaser ST, Deutsch DG (2012) Fatty Acid-binding Proteins Transport N-Acylethanolamines to Nuclear Receptors and Are Targets of Endocannabinoid Transport Inhibitors. J Biol Chem 287: 3415-3424
    25. Storch J, Thumser AE (2010) Tissue-specific Functions in the Fatty Acid-binding Protein Family. J Biol Chem 285: 32679-32683
    26. Storch J, Thumser AEA (2000) The fatty acid transport function of fatty acid-binding proteins. Bba-Mol Cell Biol L 1486: 28-44
    27. Friedman R, Nachliel E, Gutman M (2006) Fatty acid binding proteins: same structure but different binding mechanisms? Molecular dynamics simulations of intestinal fatty acid binding protein. Biophysical journal 90: 1535-1545
    28. Zamarreno F, Herrera FE, Corsico B, Costabel MD (2012) Similar structures but different mechanisms: Prediction of FABPs-membrane interaction by electrostatic calculation. Biochimica et biophysica acta 1818: 1691-1697
    29. Ragona L, Pagano K, Tomaselli S, Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Assfalg M, Molinari H (2014) The role of dynamics in modulating ligand exchange in intracellular lipid binding proteins. Bba-Proteins Proteom 1844: 1268-1278
    30. Ayers SD, Nedrow KL, Gillilan RE, Noy N (2007) Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPAR gamma by FABP4. Biochemistry 46: 6744-6752
    31. Bazinet RP, Laye S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15: 771-785
    32. di Masi A, Trezza V, Leboffe L, Ascenzi P (2016) Human plasma lipocalins and serum albumin: Plasma alternative carriers? J Control Release 228: 191-205
    33. Boden G (2008) Obesity and Free Fatty Acids. Endocrin Metab Clin 37: 635-646
    34. Anderson CM, Stahl A (2013) SLC27 fatty acid transport proteins. Mol Aspects Med 34: 516-528
    35. Murphy EJ (2015) Blood-brain barrier and brain fatty acid uptake: Role of arachidonic acid and PGE2. Journal of neurochemistry 135: 845-848
    36. Noy N (2007) Ligand specificity of nuclear hormone receptors: Sifting through promiscuity. Biochemistry 46: 13461-13467
    37. Iwamoto F, Umemoto T, Motojima K, Fujiki Y (2011) Nuclear transport of peroxisome-proliferator activated receptor alpha. J Biochem 149: 311-319
    38. Umemoto T, Fujiki Y (2012) Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPAR alpha and PPAR gamma. Genes Cells 17: 576-596
    39. Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA (2004) Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14: 505-514
    40. Anthony TE, Mason HA, Gridley T, Fishell G, Heintz N (2005) Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Gene Dev 19: 1028-1033
    41. Gerstner JR, Bremer QZ, Vander Heyden WM, LaVaute TM, Yin JC, Landry CF (2008) Brain Fatty Acid Binding Protein (Fabp7) Is Diurnally Regulated in Astrocytes and Hippocampal Granule Cell Precursors in Adult Rodent Brain. PloS one 3:
    42. Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JCP (2011) Fatty-Acid Binding Proteins Modulate Sleep and Enhance Long-Term Memory Consolidation in Drosophila. PloS one 6:
    43. Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JC (2011) Cytoplasmic to nuclear localization of fatty-acid binding protein correlates with specific forms of long-term memory in Drosophila. Communicative & integrative biology 4: 623-626
    44. Herr FM, Aronson J, Storch J (1996) Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry 35: 1296-1303
    45. Hodsdon ME, Cistola DP (1997) Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: Implications for the mechanism of ligand entry. Biochemistry 36: 1450-1460
    46. He Y, Yang X, Wang H, Estephan R, Francis F, Kodukula S, Storch J, Stark RE (2007) Solution-state molecular structure of apo and oleate-liganded liver fatty acid-binding protein. Biochemistry 46: 12543-12556
    47. Zanotti G, Feltre L, Spadon P (1994) A possible route for the release of fatty acid from fatty acid-binding protein. The Biochemical journal 301 ( Pt 2): 459-463
    48. Bakowies D, van Gunsteren WF (2002) Simulations of apo and holo-fatty acid binding protein: structure and dynamics of protein, ligand and internal water. Journal of molecular biology 315: 713-736
    49. Kaieda S, Halle B (2015) Time Scales of Conformational Gating in a Lipid-Binding Protein. J Phys Chem B 119: 7957-7967
    50. Matsuoka S, Sugiyama S, Matsuoka D, Hirose M, Lethu S, Ano H, Hara T, Ichihara O, Kimura SR, Murakami S, et al. (2015) Water-mediated recognition of simple alkyl chains by heart-type fatty-acid-binding protein. Angew Chem Int Ed Engl 54: 1508-1511
    51. Long D, Yang D (2010) Millisecond timescale dynamics of human liver fatty acid binding protein: testing of its relevance to the ligand entry process. Biophysical journal 98: 3054-3061
    52. Xiao T, Fan JS, Zhou H, Lin Q, Yang D (2016) Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding. Angew Chem Int Ed Engl 55: 6869-6872
    53. Yu BH, Yang DW (2016) Coexistence of multiple minor states of fatty acid binding protein and their functional relevance. Sci Rep-Uk 6:
    54. Morris GA, Freeman R (1979) Enhancement of Nuclear Magnetic-Resonance Signals by Polarization Transfer. Journal of the American Chemical Society 101: 760-762
    55. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS letters 584: 1721-1727
    56. Guariento M, Assfalg M, Zanzoni S, Fessas D, Longhi R, Molinari H (2009) Chicken ileal bile-acid-binding protein: a promising target of investigation to understand binding co-operativity across the protein family. The Biochemical journal 425: 413-424
    57. Glatz JF, Veerkamp JH (1983) A radiochemical procedure for the assay of fatty acid binding by proteins. Analytical biochemistry 132: 89-95
    58. Velkov T, Chuang S, Prankerd R, Sakellaris H, Porter CJ, Scanlon MJ (2005) An improved method for the purification of rat liver-type fatty acid binding protein from Escherichia coli. Protein Expr Purif 44: 23-31
    59. Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of lipid research 51: 635-640
    60. Wirasnita R, Hadibarata T, Novelina YM, Yusoff ARM, Yusop Z (2013) A Modified Methylation Method to Determine Fatty Acid Content by Gas Chromatography. B Korean Chem Soc 34: 3239-3242
    61. Cequier-Sanchez E, Rodriguez C, Ravelo AG, Zarate R (2008) Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agr Food Chem 56: 4297-4303
    62. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al. (2011) Overview of the CCP4 suite and current developments. Acta crystallographica. Section D, Biological crystallography 67: 235-242
    63. Moriarty NW, Grosse-Kunstleve RW, Adams PD (2009) electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta crystallographica. Section D, Biological crystallography 65: 1074-1080
    64. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of biomolecular NMR 6: 277-293
    65. Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS computational biology 5: e1000307
    66. Goddard TD, Kneller, D. G. SPARKY 3.
    67. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. P Natl Acad Sci USA 94: 12366-12371
    68. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2: 853-856
    69. Matsuoka D, Sugiyama S, Murata M, Matsuoka S (2015) Molecular Dynamics Simulations of Heart-type Fatty Acid Binding Protein in Apo and Holo Forms, and Hydration Structure Analyses in the Binding Cavity. J Phys Chem B 119: 114-127
    70. Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA (2014) Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor beta/delta (FABP5-PPAR beta/delta) Signaling Pathway. J Biol Chem 289: 14941-14954
    71. Zhang J, Liu ZP, Jones TA, Gierasch LM, Sambrook JF (1992) Mutating the charged residues in the binding pocket of cellular retinoic acid-binding protein simultaneously reduces its binding affinity to retinoic acid and increases its thermostability. Proteins 13: 87-99
    72. Tsukamoto S, Fujiwara K, Ikeguchi M (2009) Fatty Acids Bound to Recombinant Tear Lipocalin and Their Role in Structural Stabilization. J Biochem 146: 343-350
    73. Herr FM, Matarese V, Bernlohr DA, Storch J (1995) Surface Lysine Residues Modulate the Collisional Transfer of Fatty-Acid from Adipocyte Fatty-Acid-Binding Protein to Membranes. Biochemistry 34: 11840-11845
    74. Cistola DP, Kim K, Rogl H, Frieden C (1996) Fatty acid interactions with a helix-less variant of intestinal fatty acid-binding protein. Biochemistry 35: 7559-7565
    75. Tsfadia Y, Friedman R, Kadmon J, Selzer A, Nachliel E, Gutman M (2007) Molecular dynamics simulations of palmitate entry into the hydrophobic pocket of the fatty acid binding protein. FEBS letters 581: 1243-1247

    QR CODE