研究生: |
林凡惟 Lin, Fan-Wei |
---|---|
論文名稱: |
研究果蠅多巴胺乙醯基轉移酶受質的入口通道 Study of stustrate-entrance tunnel of Dopamine N-acetyltransferase from Drosophila melanogaster |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
殷獻生
Sheng, Yin-Hian 蘇士哲 Hung, Shih-Che |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 乙烯基輔酶A 、乙烯基轉移酶 、果蠅蛋白 、酵素動力學 、多巴胺 N-乙烯基轉移酶 、受質特異性 、受質通道 、通道瓶頸 |
外文關鍵詞: | Acetyl Coenzyme A, Acetyltransferases, Drosophila Proteins, Enzyme Kinetics, Dopamine N-acetyltransferase, Substrate Specificity, Substrate tunnel, Tunnel bottleneck |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
果蠅的多巴胺乙醯基轉移酶(dopamine N-acetyltransferase, Dat),是屬於苯烷基胺乙醯轉移酶家族的蛋白酶(EC 2.3.1.87, arylalkylamine N-acetyltransferase, AANAT),可促使褪黑激素(melatonin)前驅物質的產生,而褪黑激素(melatonin)在生理上的研究,已經被應用在人類的睡眠週期、情緒以及免疫反應當中。
在前期的研究,我們實驗室已成功將多巴胺乙醯基轉移酶(apo form)、多巴胺乙醯基轉移酶/乙醯輔酶A複合晶體(complex form)兩者的蛋白質結構解出,隨後也將多巴胺乙醯基轉移酶和基質間結合的動力學機制進行一連串的分析,更進而成功解出了高達1.20 Å解析度的多巴胺乙醯基轉移酶的三元複合體(多巴胺乙醯基轉移酶/乙醯輔酶A/基質),我們根據多巴胺乙醯基轉移酶的複合晶體結構得知,乙醯輔酶A是結合於多巴胺乙醯基轉移酶底部的孔洞通道之中,經由等溫滴定微量熱法(ITC)實驗發現到,多巴胺乙醯基轉移酶要先結合輔助因子乙醯輔酶A,才會與基質作用,這個結果顯示輔助因子能夠優先和酵素結合,因此基質只能由酵素頂端的孔洞進入基質接合空腔中。
經由序列比對以及通道運算軟體,發現了兩個位於通道瓶頸中的氨基酸M121以及D142,我們將其分別突變為色胺酸。再經由酵素動力學實驗證實,M121W以及D142W確實會阻礙基質進入疏水性的基質接合空腔,證實了乙醯輔酶A與基質是通過不同的孔洞與多巴胺乙醯基轉移酶結合。經由四種不同的基質的實驗結果發現,多巴胺比較不受到通道阻礙的影響。我們的研究證實了多巴胺乙醯基轉移酶基質通道的存在,也有助於了解果蠅AANAT的通道大小對基質選擇性的影響。
Drosophila melanogaster dopamine N-acetyltransferase (Dat, EC 2.3.1.87) belongs to the arylalkylamine N-acetyltransferase (AANAT) family, which catalyzes the synthesis of the hormone precursor (melatonin). We have solved the structures of Dat in apo form, binary complex (Dat / acetyl coenzyme A) and ternary complex form (Dat / acetylarylalkylamine / CoA) and proposed the catalytic mechanism previously. According to the binding study by isothermal titration calorimetry (ITC), the cofactor (Acetyl-CoA) needed to bind to the Dat prior to substrate, which would hinder the substrate entry to its binding site. Therefore, we speculate that an entry tunnel for substrate may exist to facilitate the substrate binding to the active site. In this study, we replaced two residues with tryptophan, M121 and D142, located inside the tunnel to see the effects of tunnel hindrance. Our DTNB-based enzyme activity measurements and enzyme kinetic studies showed that mutant M121W decreased the enzyme activity and the substrate binding comparing to wild type Dat. Among the four substrates (Dopamine, serotonin, phenylethylamine, tryptamine) tested, only the efficiency of dopamine remains. This result confirms that M121W and D142W may hinder the substrate entry, resulting in decreased binding efficiency of the binary complex. Our studies not only confirm the existence of a substrate tunnel, but also show the tunnel size may contribute to the substrate specificity.
1. Kuo-Chang CHENG, Jhen-Ni LIAO and Ping-Chiang LYU, Biochem. J, (2012), 446, 395–404.
2. Dyda, F., D. C. Klein, et al. (2000). "GCN5-related N-acetyltransferases: a structural overview." Annu Rev Biophys Biomol Struct 29: 81-103.
3. Vetting, M. W., S. d. C. LP, et al. (2005). "Structure and functions of the GNAT superfamily of acetyltransferases." Arch Biochem Biophys 433(1): 212-226.
4. Wolf, E., J. De Angelis, et al. (2002). "X-ray crystallographic studies of serotonin N-acetyltransferase catalysis and inhibition." J Mol Biol 317(2): 215-224.
5. Hickman AB, Klein DC, Dyda F. (1999). “Melatonin biosyntheses: the structure of serotonin N-acetyltransferase at 2.5 ˚A resolution suggests a catalytic mechanism.” Mol. Cell. 3:23–32.
6. Peter Karlson, C. E. S. (1962). N-acetyl-dopamine as sclerization agent of the insect cuticle. Physiolog. Chem., 195(4837), 183-184.
7. Hickman, A. B., M. A. Namboodiri, et al. (1999). "The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 Å resolution with a bisubstrate analog." Cell 97(3): 361-369.
8. Hardeland, R., & Fuhrberg, B. (1996) Ubiquitous melatonin— Presence and effects in unicells, plants and animals. Trends Comp. Biochem. Physiol. 2, 25-45.
9. Hardeland, R., Pandi-Perumal, S. R. and Cardinali, D. P. (2006) Melatonin. Int J Biochem Cell Biol. 38, 313-316.
10. Hardeland, R. and Poeggeler, B. (2003) Non-vertebrate melatonin. J Pineal Res 34, 233-241.
11. Reiter, R. J. (1993) The melatonin rhythm: both a clock and a calendar. Experientia. 49, 654-664.
12. Wright, T. R. (1987) The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet. 24, 127-222.
13. Hardeland, R., S. R. Pandi-Perumal, et al. (2006). "Melatonin." Int J Biochem Cell Biol 38(3): 313-316.
14. I. Mayer, C. Bornestaf, et al. (1997) “Melatonin in non-mammalian vertebrates Physiological role in reproduction?” Biochem. Physiol. 188A(3): 515-531.
15. Pevet, B. V.-R. a. P. (1993). "Melatonin: prescence and formation in invertebrates." Experientia 49.
16. Ekmekcioglu, C. (2006). "Melatonin receptors in humans: biological role and clinical relevance." Biomed Pharmacother 60(3): 97-108.
17. Macchi, M. M. and Bruce, J. N. (2004) Human pineal physiology and functional significance of melatonin. Frontiers in neuroendocrinology. 25, 177-195.
18. Young-Cho Kim, H.-G. L., and Kyung-An Han. (2007). D1 Dopamine Receptor dDA1 Is Required in the Mushroom Body Neurons for Aversive and Appetitive Learning in Drosophila. The Journal of Neuroscience, 27(29), 7640-7647. doi: 10.1523.
19. Alex C. Keene, S. W. (2007). Drosophila olfactory memory: single genes to complex neural circuits. Nature Reviews Neuroscience, 8, 341-354.
20. Waddell, S., Armstrong, J. D., Kitamoto, T., Kaiser, K., & Quinn, W. G. (2000). The amnesiac Gene Product Is Expressed in Two Neurons in the Drosophila Brain that Are Critical for Memory. Cell, 103(5), 805-813.
21. Hintermann, E., N. C. Grieder, et al. (1996). "Cloning of an arylalkylamine N-acetyltransferase (aaNAT1) from Drosophila melanogaster expressed in the nervous system and the gut." Proc Natl Acad Sci U S A 93(22): 12315-12320.
22. Neuwald, A. F. and Landsman, D. (1997) GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci. 22, 154-155.
23. Hickman, A. B., Klein, D. C. and Dyda, F. (1999) Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Mol Cell. 3, 23-32.
24. Hickman, A. B., Namboodiri, M. A., Klein, D. C. and Dyda, F. (1999) The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 A resolution with a bisubstrate analog. Cell. 97, 361-369.
25. Wolf, E., J. De Angelis, et al. (2002). "X-ray crystallographic studies of serotonin N-acetyltransferase catalysis and inhibition." J Mol Biol 317(2): 215-224.
26. Scheibner, K. A., De Angelis, J., Burley, S. K. and Cole, P. A. (2002) Investigation of the roles of catalytic residues in serotonin N-acetyltransferase. J Biol Chem. 277, 18118-18126.
27. Ferry, G., C. Ubeaud, et al. (2004). "Purification of the recombinant human serotonin N-acetyltransferase (EC 2.3.1.87): further characterization of and comparison with AANAT from other species." Protein Expr Purif 38(1): 84-98.
28. Woody, R. W. (1995). Circular dichroism. In S. Kenneth (Ed.), Methods in Enzymology (Vol. Volume 246, pp. 34-71): Academic Press.
29. Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., Biedermannova L., Sochor J. Damborsky J. (2012) CAVER 3.0. A tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708.
30. Cheng, K. C., Liao, J. N. and Lyu, P. C. (2012) Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism. The Biochemical journal. 446, 395-404).
31. Jacqueline De Angelis, J. G., David C. Klein, and Philip A. Cole (1998). "Kinetic Analysis of catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87)." Journal of Biological Chemistry 273(5): 3045-3050.
32. Khalil, E. M., J. De Angelis, et al. (1998). "Indoleamine analogs as probes of the substrate selectivity and catalytic mechanism of serotonin N-acetyltransferase." J Biol Chem 273(46): 30321-30327.
33. Scheibner, K. A., J. De Angelis, et al. (2002). "Investigation of the roles of catalytic residues in serotonin N-acetyltransferase." J Biol Chem 277(20): 18118-18126.
34. Raffa, S. D. S. a. R. B. (2004). "Isothermal Titration Calorimetric study of RNase-A kinetics (cCMP3’-CMP) involving end-product Inhibition." Pharmaceutical Research . 21: No. 9.
35. T. S. Wiseman, S. Williston, J. F. Brandts, and L.-N. Lin. (1989) “Rapid measurement of binding constants and heats of binding using a new titration calorimeter.” Analytic. Biochem .179:131–137.
36. Spink, C., and Wadso, I. (1976). “Calorimetry as an analytical tool in biochemistry and biology.” Methods Biochem. Anal. 23, 1–159.
37. Todd, M. J., and Gomez, J. (2001). “Enzyme kinetics determined using calorimetry: A general assay for enzyme activity?” Anal. Biochem. 296, 179–187.
38. Watt, G. D. (1990). “A microcalorimetric procedure for evaluating the kinetic parameters of enzymecatalyzed reactions: Kinetic measurements of the nitrogenase system.” Anal. Biochem. 187, 141–146.
39. Williams, B. A., and Toone, E. J. (1993). “Calorimetric evaluation enzyme kinetics parameters.” J. Org. Chem. 58, 3507–3510.
40. Bina Z-P, Sharron B-Z, et al. (2011). “Molecular evolution of multiple Arylalkylamine N-acetyltransferase (AANAT) in fish.” Mar. Drugs 9: 906-921.
41. Cheng, K.-C. (2013). Structural and functional studies of dopamine N-acetyltransferase from Drosophila melanogaster.
42. Blenau, W., & BaμMann, A. (2001). Molecular and pharmacological properties of insect biogenic amine receptors: Lessons from Drosophila melanogaster and Apis mellifera. Archives of Insect Biochemistry and Physiology, 48(1), 13-38. doi: 10.1002/arch.1055.
43. T. S. Wiseman, S. Williston, J. F. Brandts, and L.-N. Lin. (1989) “Rapid measurement of binding constants and heats of binding using a new titration calorimeter.” Analytic. Biochem .179:131–137.
44. Raffa, S. D. S. a. R. B. (2004). "Isothermal Titration Calorimetric study of RNase-A kinetics (cCMP3’-CMP) involving end-product Inhibition." Pharmaceutical Research . 21: No. 9.