簡易檢索 / 詳目顯示

研究生: 宋孟勳
Meng-Shiun Sung
論文名稱: 利用電漿輔助化學氣相沈積多階段製程合成奈米碳管與增進場發射特性之研究
Enhanced field emission characteristics of carbon nanofibers by multi-stage growth process
指導教授: 柳克強
Keh-Chyang Leou
蔡春鴻
Chuen-Horng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 97
中文關鍵詞: 奈米碳管/奈米碳纖維電感式電漿輔助化學氣相沈積場發射元件多階段製程
外文關鍵詞: CNT/CNF, ICP-CVD, Field emission device, multi-stage process
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管材料所具有獨特的結構,極佳的機械、熱傳導、化學穩定性與其高深寬比之特性等使其應用潛力極為廣泛,可應用於結構複合材料、儲能材料、奈米導線、奈米探針、場發射元件等。
      利用電感式電漿輔助化學氣相沈積( ICP-CVD )方法可以大面積成長以及準直性的奈米碳管,在較低的製程溫度( T < 500 ℃),適合應用在顯示器元件的玻璃基板上。增加場發射特性的方法有二點:一是減少奈米碳管在場發射過程中的屏蔽效應( screen effect )以降低起始電場( turn-on field );以及增加場發射電流的均勻度(uniformity)和穩定性(stability)。
    本研究利用多階段的電漿處理與奈米碳管成長製程來達到此目標。首先藉由電漿前處理來控制催化劑密度,以進一步控制奈米碳管之密度,以減少屏蔽效應對場發射特性不良的影響。再利用電漿後處理縮小碳管頂端的催化劑。使得奈米碳管呈現尖錐狀,同時增加奈米碳管以及基板表面的接著性。接著第二階段的奈米碳管再成長製程,使奈米碳管利用頂端縮小的催化劑成長直徑較小的奈米碳管,以增加奈米碳管的長徑比。再利用調變後處理以及再成長的參數,使其場發射特性達到最佳化。
    在結果部分,本研究成功發展多階段製程系統在玻璃基板上成長奈米碳管;有效的控制奈米碳管密度以及降低起始電場(從22.68 V /um降到7.16 V /um),達到增進場發射特性的目的。


    Direct synthesis of vertically aligned CNFs has been successfully fabricated on display glass substrates at low temperature (< 500 ℃) by inductive couple plasma-enhance chemical vapor deposition (ICP CVD). Such process technique can be easily integrated with micro-fabrication process and can be scaled up for large size substrates. How to decrease the screen effect and turn-on field and increase the uniformity of CNFs is the way to enhance the field emission characteristics.
    This study used multi-step growth process and plasma treatment to achieve the goal. First, control the density of CNFs by plasma pre-treatment which controlling the size and density of catalytic nanoparticles. Second, diminish the size of catalyst which staying in the tip of CNFs by plasma post-treatment. CNFs exhibit spindt type and increased the adhesion between CNFs and substrate. Then, re-grow small diameter of CNFs on treated catalyst which stay in the tip of CNFs to increase aspect ratio. Optimize the post-treatment and re-growth parameter to enhance the field emission characteristics.
    This study succeeded to develop multi-step growth process on glass substrate and enhance the field emission characteristics by integrated and optimized to control the size and density of CNFs and decreased turn-on field from 22.68 V / um to 7.16 V / um.

    摘 要 i Abstract ii 目 錄 iii 圖 目 錄 v 表 目 錄 ix 第一章 緒 論 1.1 奈米碳管的簡介 1 1.1.1 奈米碳管的成長方式 3 1.1.2 奈米碳管成長模式與機制 4 1.2 奈米碳管場發射的應用 6 1.3 研究動機 8 第二章 文獻回顧與研究方法 2.1 利用電漿輔助化學氣相沉積系統成長奈米碳管 11 2.1.1 電漿前處理製程 12 2.1.2 電漿後處理製程 14 2.2 奈米碳管多階段製程以及場發射特性的改變 16 2.2.1 單根奈米碳管多階段製程 17 2.2.2 多階段製程成長大面積奈米碳管以及場發射特性的影響 18 2.2.3 文獻回顧結果與討論 23 2.3 研究目的與方法 25 2.3.1 試片製備方式 26 2.3.2 前處理製程 27 2.3.3 後處理製程以及再成長製程 27 2.3.4 場發射量測 28 第三章 實驗設備與場發射原理 3.1電感式耦合電漿輔助化學氣相沉積系統 29 3.1.1 電感式耦合電漿源機台 30 3.1.2 真空系統以及壓力控制 31 3.1.3 溫度控制與量測以及氣體流量的控制 31 3.2 場發射基本原理 32 3.2.1 富爾-諾罕(Fowler - Nordheim)理論 33 3.2.2 奈米碳管場發射量測 34 3.3 場發射量測機台 36 3.4 探針式場發射量測 37 3.4.1 探針式場發射量測模型 39 3.4.2 探針式與平板式場發射量測結果與計算程式驗證 41 3.4.3 場增強因子(刍汹)的修正 44 3.4.4 不同尺寸探針場發射量測結果以及程式計算 47 第四章 實驗結果與討論 4.1 實驗方法 51 4.2 電漿前處理製程與成長結果 52 4.2.1 電漿前處理時間的影響 52 4.2.2 不同電漿前處理製程的影響 55 4.2.3 催化劑X光能量分散成份分析儀( EDX )分析 57 4.3 電漿後處理製程 59 4.3.1 不同電漿後處理製程時間的影響 59 4.4 奈米碳管再成長製程 62 4.4.1 臨場奈米碳管再成長製程 62 4.4.2 臨場奈米碳管再成長製程場發射特性量與模擬分析 65 4.4.3 藉由臨場奈米碳管再成長製程增進場發射特性 71 4.4.4 非臨場奈米碳管再成長製程 73 4.4.5 非臨場奈米碳管再成長製程場發射特性量測與模擬分析 77 4.5 奈米碳管再成長TEM影像 83 第五章 總結與未來展望 5.1 實驗結果總結 85 5.1.1 奈米碳管多階段製程 85 5.1.2 場發射特性影響探討 86 5.1.3 場發射因子(刍)模擬結果探討 87 5.1.4 場發射結果以及其應用 88 5.2 未來展望 89 5.2.1多階段成長奈米碳管製程各項統計分析 89 5.2.2 改變再成長製程成長奈米碳管以及其場發射量測分析 89 5.2.3 場發射特性量測 91 第六章 參考文獻

    [1] M. R. Falvo and G. J. Clary, "Bending and buckling of carbon nanotubes under large strain. (Cover story)," Nature, vol. 389, p. 582, 1997.
    [2] L. Jin, C. Bower, and O. Zhou, "Alignment of carbon nanotubes in a polymer matrix by mechanical stretching," Applied Physics Letters, vol. 73, pp. 1197-1199, 1998.
    [3] S. M. Lee and Y. H. Lee, "Hydrogen storage in single-walled carbon nanotubes," Applied Physics Letters, vol. 76, pp. 2877-2879, 2000.
    [4] F. Okuyama, T. Hayashi, and Y. Fujimoto, "Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes," Journal of Applied Physics, vol. 84, pp. 1626-1631, Aug 1998.
    [5] W. A. Deheer, A. Chatelain, and D. Ugarte, "A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE," Science, vol. 270, pp. 1179-1180, Nov 1995.
    [6] S. Iijima, "HELICAL MICROTUBULES OF GRAPHITIC CARBON," Nature, vol. 354, pp. 56-58, Nov 1991.
    [7] W. R. Davis, R. J. Slawson, and G. R. Rigby, "An Unusual Form of Carbon," Nature, vol. 171, pp. 756-756, 1953.
    [8] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubules of 1-nm diameter," Nature, vol. 363, p. 603, 1993.
    [9] D. S. Bethune and C. H. Kiang, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature, vol. 363, p. 605, 1993.
    [10] M. Endo, Y. A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, and M. S. Dresselhaus, "Structural characterization of cup-stacked-type nanofibers with an entirely hollow core," Applied Physics Letters, vol. 80, pp. 1267-1269, 2002.
    [11] M. S. Dresselhaus, P. Avouris, and LINK, Carbon Nanotubes:Synthesis, Structure, Properties, and Applications. Berlin: Springer, 2001.
    [12] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION," Chemical Physics Letters, vol. 243, pp. 49-54, Sep 1995.
    [13] Y. Huh, J. Y. Lee, T. J. Lee, S. C. Lyu, and C. J. Lee, "The selective growth of carbon nanotubes on hole-pattern by thermal chemical vapor deposition," Journal of the Korean Physical Society, vol. 42, pp. S732-S734, Feb 2003.
    [14] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Dai, "Electric-field-directed growth of aligned single-walled carbon nanotubes," Applied Physics Letters, vol. 79, pp. 3155-3157, 2001.
    [15] L. Delzeit, C. V. Nguyen, R. M. Stevens, J. Han, and M. Meyyappan, "Growth of carbon nanotubes by thermal and plasma chemical vapour deposition processes and applications in microscopy," Nanotechnology, vol. 13, pp. 280-284, Jun 2002.
    [16] T. Ikuno, H. Furuta, T. Yamamoto, S. Takahashi, M. Kamizono, S. Honda, M. Katayama, T. Hirao, and K. Oura, "Structural characterization of randomly and vertically oriented carbon nanotube films grown by chemical vapour deposition," Surface and Interface Analysis, vol. 35, pp. 15-18, Jan 2003.
    [17] J.-M. Bonard, H. Kind, T. Stöckli, and L.-O. Nilsson, "Field emission from carbon nanotubes: the first five years," Solid-State Electronics, vol. 45, pp. 893-914, 2001.
    [18] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, "Carbon nanotube growth by PECVD: a review," Plasma Sources Science & Technology, vol. 12, pp. 205-216, May 2003.
    [19] A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, "Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly," Journal of Applied Physics, vol. 97, Feb 2005.
    [20] W. Zhu, C. Bower, G. P. Kochanski, and S. Jin, "Electron field emission from nanostructured diamond and carbon nanotubes," Solid-State Electronics, vol. 45, pp. 921-928, 2001.
    [21] N. de Jonge and J. M. Bonard, "Carbon nanotube electron sources and applications," Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol. 362, pp. 2239-2266, Oct 2004.
    [22] J. Zhang, Y. Cheng, Y. Z. Lee, B. Gao, Q. Qiu, W. L. Lin, D. Lalush, J. P. Lu, and O. Zhou, "A nanotube-based field emission x-ray source for microcomputed tomography," Review of Scientific Instruments, vol. 76, pp. 094301-4, 2005.
    [23] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, "Fully sealed, high-brightness carbon-nanotube field-emission display," Applied Physics Letters, vol. 75, pp. 3129-3131, 1999.
    [24] D.-S. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, C. K. Lee, J. H. Yoo, J.-M. Kim, J. E. Jung, Y. W. Jin, Y. J. Park, and J. B. You, "Carbon nanotube electron emitters with a gated structure using backside exposure processes," Applied Physics Letters, vol. 80, p. 4045, 2002.
    [25] I.-M. Choi and S.-Y. Woo, "Application of carbon nanotube field emission effect to an ionization gauge," Applied Physics Letters, vol. 87, pp. 173104-3, 2005.
    [26] J.-M. Bonard, J.-P. Salvetat, T. Stöckli, W. A. de Heer, L. Forro, and A. Chatelain, "Field emission from single-wall carbon nanotube films," Applied Physics Letters, vol. 73, pp. 918-920, 1998.
    [27] M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. Backstrom, E. E. B. Campbell, and F. Rohmund, "Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films," Applied Physics a-Materials Science & Processing, vol. 73, pp. 409-418, Oct 2001.
    [28] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, "In situ-grown carbon nanotube array with excellent field emission characteristics," Applied Physics Letters, vol. 76, pp. 3813-3815, 2000.
    [29] C. Bower, W. Zhu, S. Jin, and O. Zhou, "Plasma-induced alignment of carbon nanotubes," Applied Physics Letters, vol. 77, pp. 830-832, 2000.
    [30] J. B. O. Caughman, L. R. Baylor, M. A. Guillorn, V. I. Merkulov, D. H. Lowndes, and L. F. Allard, "Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition," Applied Physics Letters, vol. 83, pp. 1207-1209, 2003.
    [31] S. S. Kim, H. Y. Chang, C. S. Chang, and N. S. Yoon, "Antenna configuration for uniform large-area inductively coupled plasma production," Applied Physics Letters, vol. 77, pp. 492-494, 2000.
    [32] J. H. Choi, Y. L. Tae, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S. G. Yu, W. Yi, I. T. Han, and J. M. Kim, "Density control of carbon nanotubes using NH3 plasma treatment of Ni catalyst layer," Thin Solid Films, vol. 435, pp. 318-323, Jul 2003.
    [33] C. H. Weng, K. C. Leou, H. W. Wei, Z. Y. Juang, M. T. Wei, C. H. Tung, and C. H. Tsai, "Structural transformation and field emission enhancement of carbon nanofibers by energetic argon plasma post-treatment," Applied Physics Letters, vol. 85, pp. 4732-4734, 2004.
    [34] K. S. Ahn, J. H. Kim, K. N. Lee, C. H. Lee, C. O. Kim, J. P. Hong, Y. J. Jeon, and H. Cheong, "In-situ rf plasma treatment of multi-wall carbon nanotubes with various reactive gases for enhanced field emission," Journal of the Korean Physical Society, vol. 45, pp. 154-157, Jul 2004.
    [35] C. Y. Zhi, X. D. Bai, and E. G. Wang, "Enhanced field emission from carbon nanotubes by hydrogen plasma treatment," Applied Physics Letters, vol. 81, pp. 1690-1692, 2002.
    [36] H. Cui, X. Yang, L. R. Baylor, and D. H. Lowndes, "Growth of multiwalled-carbon nanotubes using vertically aligned carbon nanofibers as templates/scaffolds and improved field-emission properties," Applied Physics Letters, vol. 86, pp. 053110-3, 2005.
    [37] Y. Y. Wang, S. Gupta, M. Liang, and R. J. Nemanich, "Increased field-emission site density from regrown carbon nanotube films," Journal of Applied Physics, vol. 97, May 2005.
    [38] C. J. Huang, C. M. Yeh, M. Y. Chen, J. Hwang, and C. S. Kou, "Field emission from a carbon nanofiber/carbon nanocone composite structure fabricated by a two-step growth process," Journal of the Electrochemical Society, vol. 153, pp. H15-H17, 2006.
    [39] J. H. Moon, S. H. Lim, H. S. Yoon, K. C. Park, S. Kang, C. Bae, J. J. Kim, and J. Jang, "Spindt tip composed of carbon nanotubes," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 23, pp. 1964-1969, 2005.
    [40] H. J. Kim, I. T. Han, Y. J. Park, J. M. Kim, J. B. Park, B. K. Kim, and N. S. Lee, "Synthesis of hybrid multiwall carbon nanotubes and their enhanced field emission properties," Chemical Physics Letters, vol. 396, pp. 6-9, Sep 2004.
    [41] S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, "Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties," Applied Physics Letters, vol. 82, pp. 3520-3522, 2003.
    [42] C. H. P. Poa, S. J. Henley, G. Y. Chen, A. Adikaari, C. E. Giusca, and S. R. P. Silva, "Growth and field emission properties of vertically aligned carbon nanofibers," Journal of Applied Physics, vol. 97, Jun 2005.
    [43] D. W. Kim and S. Jin, "Morphology control of patterned carbon nanofiber arrays for field emission applications," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 346-349, Jan 2006.
    [44] D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, "Field emitters based on porous aluminum oxide templates," Journal of Applied Physics, vol. 86, pp. 3983-3987, Oct 1999.
    [45] P. J. de Pablo, S. Howell, S. Crittenden, B. Walsh, E. Graugnard, and R. Reifenberger, "Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes," Applied Physics Letters, vol. 75, pp. 3941-3943, 1999.
    [46] S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteiro, J. W. Ager Iii, and I. G. Brown, "Electron emission from films of carbon nanotubes and ta-C coated nanotubes," Applied Physics Letters, vol. 75, pp. 2680-2682, 1999.
    [47] 董建宏, "研製電漿輔助氣相化學沉積法成長奈米碳管於玻璃基版與場發射特性之探討," in 工程與系統科學系 新竹: 國立清華大學, 2004.
    [48] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
    [49] Y. Cheng and O. Zhou, "Electron field emission from carbon nanotubes," Comptes Rendus Physique, vol. 4, pp. 1021-1033, Nov 2003.
    [50] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proceedings of the Royal Society of London. Series A, vol. 119, pp. 173-181, 1928.
    [51] R. Gomer, Field Emission And Field Ionization. New York: American Institute of Physics, 1993.
    [52] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, "Physical properties of thin-film field emission cathodes with molybdenum cones," Journal of Applied Physics, vol. 47, pp. 5248-5263, 1976.
    [53] H. W. Wei, C. H. Tung, M. S. Sung, K. C. Leou, and C. H. Tsai, "On the growth of carbon nanofibers on glass with a Cr layer by inductively coupled plasma chemical vapor deposition: The effect of Ni film thickness," Journal of Applied Physics, vol. 102, pp. 114306-7, 2007.
    [54] M.-C. Lin, "Space-charge effects of electrons and ions on the steady states of field-emission-limited diodes," 2005, pp. 636-639.
    [55] J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, "Space-Charge Effects in Field Emission," Physical Review, vol. 92, p. 45, 1953.
    [56] 莊鎮宇, "奈米碳管在熱裂解化學氣相沉積法中的成長機制研究," in 工程與系統科學系 新竹: 國立清華大學, 2004.
    [57] 翁政輝, "電感耦合式電漿輔助化學氣相沉積系統中奈米碳管的成長與臨場後處理及拉曼光譜分析," in 工程與系統科學系 新竹: 國立清華大學, 2004.
    [58] S. H. Seo, J. S. Song, M. H. Oh, J. S. Park, and Y. Z. Wang, "Nucleation and growth behavior during initial stage in sublimation epitaxy of SiC films on 6H-SiC(0001) substrate," Thin Solid Films, vol. 469-70, pp. 149-153, Dec 2004.
    [59] 蕭仲軒, "氧氣輔助電漿輔助式化學氣相沉積法低溫合成單壁奈米碳管之研究," in 工程與系統科學系 新竹: 國立清華大學, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE