簡易檢索 / 詳目顯示

研究生: 王仁聰
Jen-Tsung Wang
論文名稱: 4'-α/β-碳氨鏈尿苷類似物分子庫之建立:醯胺尿苷之合成
Synthesis of 4'-α/β-aminomethyl uridine analogs for construction of libraries via amide-bond formation
指導教授: 俞鐘山
Chung-Shan Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 尿苷分子庫
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多核苷(Nucleosides)的修飾物在抗病毒、抑制腫瘤細胞生長與核醫藥物上扮演相當重要的角色;目前已開發的藥物對於抗病毒有不錯之成效,但病毒的種類眾多與各式各樣新穎的病毒株出現,又加上面對環境的變遷,突變出更能適應的病毒株,使得原有藥性失效或降低。在本論文的研究裡以尿苷(Uridine)為起始物,主要合成出4’-α/β-aminomethyl uridine之相關核苷修飾化合物,來與市售各式各樣的酸基耦合形成醯胺鍵以建立起大量化分子庫。
    合成路徑中,尿苷2',3',5'氫氧基先以TBDMSCl保護,接著HOAc將5'去掉保護,以EDC來將5'氫氧基氧化成醛基;置於NaOH鹼性條件下與甲醛反應,經NaBH4還原可製備出延伸出之4'碳氫氧支鏈尿苷。
    後續將4'碳氫氧支鏈尿苷引入離去基;使用tosyl (TsO-)離去基無法成功的以N3-來置換,既使升高溫度(110℃)亦沒有反應;改以Triflate (TfO-)強離去基時,當接上一個當量的離去基,以LiN3行置換反應得到的化合物是經過環化路徑的2',4'-BNA (N-type)產物。由先前研究過文獻NMR光譜來比較,在C1',C2',C3'上個別的氫皆呈現單峰(偶合常數為零)。
    接上兩個當量的TfO-離去基時,以LiN3行置換反應中,並無發生預期的環化現象,而N3-可將兩個離去基置換出;推測這可能是立障的關係,當存在兩個TfO-離去基時,結構上會造成立體障礙排擠使6'的離去基與2'矽保護基無法有效發生環化。之後以TBAF將TBDMS矽保護基移除,通入氫氣以Pd/C催化,使azido還原得到兩個氨基(amino)的尿苷類似物。
    合成出的4',4'-bis-aminomethyl uridine,未來計劃與各式各樣的酸耦合,獲得大量化的醯氨尿苷類似物,以提供後續細胞活性試驗,期許高效率地篩選出具有潛力的新穎化合物。


    Numerous nucleoside analogs play an important role in acting as anti-viral, anti-tumor and nuclear imaging agents. However, there are a variety of new viruses and various mutants appear, which may results in resistance or inefficiency of anti-viral activity. In this study, as the starting material, uridine was derivatized to afford 4'-α/β-aminomethyl uridine analogs followed by coupling with various acids for construction of libraries via amide-bond formation.
    2',3',5'-hydroxyl groups of uridine were first protected with TBDMSCl, followed by restoring 5'-OH group with HOAc. After oxidation with EDC, the aldehyde could be produced. Treatment with
    aqueous HCHO and NaOH and subsequent reduction with NaBH4, the 4'α-C-branched chain could be generated.
    Attempt to introduce azido group by nucleophilic substitution of the tosyl group was unsuccessful even under 110 oC. Whereas triflate proved to be an excellent leaving group, only cyclized product 2',4'-BNA was obtained when one free hydroxy moieties were reacted with lithium azide. This was confirmed by comparing with the reported NMR spectra, which showed only singlet for all the three protons (coupling constant was zero) on C1', C2' and C3'.
    Ditriflates could be prepared when two equivalents of triflic anhydride was used. Repeating the treatment with lithium azide, the desired azido groups could be introduced and no cyclized product was observed. The steric interference raised by the second trifluoromethan
    -sulfonyl group was proposed to account for the unfavorable nucleophilic attack of 6'-OTf on 2'-TBDMS. Removal of TBDMS group was easily achieved using TBAF, which was followed by transformation of the azido groups to the diamino groups under reduction conditions of hydrogen gas and Pd/C.
    As the target compound 4',4'-bis-aminomethyl uridine analog was in hand, further coupling with various carboxylic acids to provide the compound libraries through amide linkage are performable. Relevant biological assay studies to find out the potential compound are in progress.

    目 錄 謝誌...................................................Ⅰ 中文摘要...............................................Ⅱ 英文摘要...............................................Ⅳ 縮寫對照表.............................................Ⅵ 目錄............... ...................................Ⅶ 第一章 緒論 1.1 前言.............................................1 1.2 核苷與核苷酸修飾上的運用.........................4 1.2-1 修飾後的核苷(酸)類似物於抗病毒的使用.........4 1.2-2修飾後的核苷(酸)類似物於惡性腫瘤治療運用......9 1.2-3分子造影上的運用.............................11 1.3 分子庫的建構-組合化學(combinatorial chemistry)......13 第二章 研究動機 15 第三章 結果與討論 3.1 尿苷中4'α-hydroxymethyl延伸合成..................19 3.2 2'-O-4'-C-methylene bridged nucleic acid (2',4'-BNA)生成.25 第四章 實驗部份 4.1 一般實驗方法...................................30 4.2 藥品與溶劑......................................31 4.3 儀器設備與器材..................................33 4.4 化合物製備方法...................................34 化合物25的製備................................34 化合物26的製備................................36 化合物28的製備................................37 化合物29的製備................................39 化合物30的製備................................41 化合物31的製備................................43 化合物33的製備................................45 化合物36的製備................................47 化合物39的製備................................49 化合物41的製備................................51 化合物42的製備................................53 化合物43的製備................................55 第五章 結論 57 文獻資料 58 附 錄 NMR 氫光譜........................................63 NMR (DEPT) 碳光譜.................................76 圖目錄 圖一. 鹼基基本結構表示.................................3 圖二. 五碳醣構形圖.....................................3 圖三. 修飾核苷酸結構...................................5 圖四. Brivudine藥物作用機制.............................6 圖五. AZT藥物作用機制.................................7 圖六. HSV-1 tk自殺基因治療.............................10 圖七. 化合物36 化學位移 (chemical shift) .................26 圖八. 環化作用.........................................28 表目錄 表一. DNA核苷單體結構與命名...........................2 表二. RNA核苷單體結構與命名...........................2 表三. 已發展出的HIV核苷反轉錄酶抑制藥物...............8 表四. 放射性核苷修飾物.................................12

    [1] Robert J. Jones, Norbert Bischofberger Antiviral Res. 1995, 27,
    1-17.
    [2] L. Jordheim, C. M. Galmarini, and C. Dumontet Curr. Drug Targets
    2003, 4, 443-460.
    [3] Peter Wutzler, Rudolf Thust Antiviral Res. 2001, 49, 55-74.
    [4] Rakesh Kumar Curr. Med. Chem. 2004, 11, 2749-2766.
    [5] K Shah, A Jacobs, XO Breakefield1, R Weissleder Gene ther.
    2004, 11, 1175-1187.
    [6] Eric T. Kool, Juan C. Morales, and Kevin M. Guckian Angew.
    Chem. –Int. Edit. 2000, 39, 990-1009.
    [7] Shu-ichi Nakano, Yuuki Uotani, Shoji Nakashima, Yosuke Anno,
    Masayuki ujii, and Naoki Sugimoto J. Am. Chem. Soc. 2003, 125,
    8086-8087.
    [8] Matt A. Peterson, BrDLEY l. Nilsson, Sanchita Sarker, Bogdan
    Doboszewski, Weijian Zhang, and Morris J. Robins J. Org. Chem.
    1999, 64, 8183-8192.
    [9] Gian Maria Pacifici Early Hum. Dev. 2005, 81, 773-778.
    [10]E. De Clercq Biochem. Pharmacol. 2004, 68, 2301-2315.
    [11]Erik De Clercq J. Clin. Virol. 2004, 30, 115-133.
    [12]Matthew D. Lynx, Alice T. Beutley, Edward E. Mckee Biochem.
    Pharmacol. 2006, 71, 1342-1348.
    [13] Erik De Clercq and Antonín Holý Nature 2005, 4, 928-940.
    [14]B. Marples, O. Greco, M. C. Joiner, S.D. Scott Eur. J. Cancer 2002,
    38, 231-239.
    [15]Guang Xu, and Howard L. McLeod Clin. Cancer Res. 2001, 7,
    3314-3324.
    [16]Cheng Y. C., Grill S. P., Dutschman G. E., Nakayama K., Bastow K.
    F. J. Biol. Chem. 1983, 258, 12460.
    [17]Erik F. J. De Vries, Anne Rixt Buursma, Geke A.P. Hospers, Nanno
    H. Mulder, and Willem Vaalburg Curr. Phar. Design 2002, 8, 1435
    -1450.
    [18] Moolten F. L. Cancer Res. 1986, 46 5276-5281.
    [19] Naxin Wu and Mohammad M Ataai Curr. Opin. Biotechnol. 2000,
    11, 205-208.
    [20] Ralph Weissleder, Umar Mahmood Radiology 2001, 219, 316-333.
    [21] K Shah, A Jacobs, XO Breakefield and R Weissleder Gene Ther.
    2004, 11, 1175-1187.
    [22] Juri Gelovani Tjuvajev, Mikhail Doubrovin, Timoyhy Akhurst,
    Shangde Cai, Julius Balatoni, Mian M. Alauddin, Ronald Finn,
    William Bornmann, Howard Thaler, Peter S. Conti, Ronald G.
    Blasberg J. Nucl. Med. 2002, 43, 1072-1083.
    [23]Seok Rye Choi, Zhi-Ping Zhuang, Ann-Marie Chacko, Paul D. Acton,
    Juri Tjuvajev-Gelovani, Mikhai Doubrovin, David C. K. Chu, Hank F.
    Kung Acad. Radiol. 2005, 12, 798-805.
    [24]Ji-Quan Wang, Xiangshu Fei, Thomas A. Gardner, Gary D. Hutchuns,
    and Qi-Huang Zheng Bioorg. Med. Chem. 2005, 13, 549–556.
    [25]Michaela Grote, Steffi Noll, Bernhard Noll, Bernd Johannsen, and
    Werner Kraus Can. J. Chem. 2004, 82, 513-523.
    [26]Gareth Thomas Medicinal chemistry an introduction 2000 Wiley
    Interscience.
    [27]Chung-Yi Wu, Chuan-Fa Chang, Jenny Szu-Yu Chen, Chi-Huey
    Wong, and Chun-Hung Lin Angew. Chem.- Int. Edit. 2003, 42,
    4661-4664.
    [28]Michael D. Best, Ashraf Brik, Eli Chapman, Lac V. Lee, Wei-Chieh
    Cheng, and Chi-Huey Wong ChemBioChem 2004, 5, 811-819.
    [29] Stephen Locarnini, William S. Mason J. Hepatol. 2006, 44, 422-431
    [30] John D. Kriesel, Spotswood L. Spruance, Mark Prichard, Jacqueline
    N. Parker and Earl R. Ken J. Infect. Dis. 2005, 192, 156-161.
    [31] Makoto Nomura, Satoshi Shuto, Motohiro Tanaka, Takuma Sasaki,
    Shuichi Mori, Shiro Shigeta, and Akira Matsuda J. Med. Chem. 1999,
    42, 2901-2908.
    [32] Satoru Kohgo, Kohei Yamada, Kenji Kitano, Yuko Iwai, Shinji
    Sakata, Noriyuki Ashida, Hiroyuki Hayakawa, Daisuke Nameki,
    Eiichi Kodama, Masao Matsuoka, Hiroaki Mitsuya, and Hiroshi
    Ohrui Nucleoside Nucleotide Nucleic Acids 2004, 23, 671-690.
    [33] Daniel Summerer and Andreas Marx Bioorg. Med. Chem. Lett. 2005,
    15, 869-871.
    [34] Maqbool A. Siddiqui, Stephen H. Hughes, Paul L. Boyer, Hiroaki
    Mitsuya, Que N. Van, Clifford George, Stefan G. Sarafin anos, and
    Victor E. Marquez J. Med. Chem. 2004, 47, 5041-5048.
    [35] Satoshi Obika, Kem-ichiro Morioo, Daishu Nanbu, Yoshiyuki Hair,
    Hiromi Itoh, and Takeshi Imanishi Tetrahedron 2002, 3039-3049.
    [36] Ingrid Le Cle´zio, Heinz Gornitzka, Jean-Marc Escudier, and Alain
    Vigroux J. Org. Chem. 2005, 70, 1620-1629.
    [37] Henrik M. Pfundhellera, Torsten Bryldb, Carl E. Olsenc, and Jesper
    Wengelb Helv. Chim. Acta 2000, 83, 128-151.
    [38]Raymond D. Youssefyeh, Julien P. H. Verheyden, and John G. Moffatt
    J. Org. Chem. 1979, 44, 1301-1309.
    [39]Gordon H. Jones, Masao Taniguchi, Derek Tegg, and John G.
    Moffatt J. Org. Chem. 1979, 44, 1309-1317.
    [40]Mickael Montembault, Nathalie Bourgougnon, and Jacques Lebreton
    Tetrahedron Lett. 2002, 43, 8091-8094.
    [41]Helmut Vorbrüggen, Carmen Ruh-Pohlenz Handbook of Nucleoside
    Synthesis 2001, Wiley Interscience.
    [42]Theodora W. Greene, Peter G. M. Wuts Protective Groups on
    Organic Synthesis 1999, 3th, Wiley Interscience.
    [43]Erick M. Carreira, and J. Du Bois J. Am. Chem. Soc. 1995, 117,
    8106-8125.
    [44]S.Chandrasekhar, B. Nagendra Babu, N. Ramakrishna Reddy, and L.
    Chandraiah Arkivoc 2005, 6, 40-47.
    [45]Michael Meldgaard, Flemming Gundorph Hansen, and Jesper
    Wengel J. Org. Chem. 2004, 69, 6310-6322.
    [46]D.D. Perrin, and W. L. F. Armarego Purification of Laboratory
    Chemicals 3th.
    [47]Victor A. Timoshchuk, Richard I. Hogrefe, and Morteza M. Vaghefi
    Nucleosides Nucleotides Nucleic Acids 2004, 23, 171-181.
    [48]Hansjörg Streicher, Jöns Meisch, and Christoph Bohner Tetrahedron
    2001, 57, 8851-8859.
    [49]Yoshiyuki Hair, Satoshi Obika, Minako Sakaki, Ken-ichiro Morio,
    Yuriko Yamagata, and Takeshi Imanishi Tetrahedron 2002, 58,
    3051-3063.
    [50] Nigel I. Howard, and Timothy D. H. Bugg Bioorg. Med. Chem. 2003, 11,
    3083-3099.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE