簡易檢索 / 詳目顯示

研究生: 徐慶洋
Chin-Yang Hsu
論文名稱: 使用離子液體生產生質柴油之研究
指導教授: 黃世傑
Shyh-Jye Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 35
中文關鍵詞: 生質柴油離子液體深共熔溶劑轉酯化
外文關鍵詞: deep eutectic solvents, DESs
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 油價的高漲,環保意識的抬頭,發展新型態且乾淨的替代能源成為全世界的首要目標。就目前發展的生質能而言,生質柴油能以回收的廢食用油進行生產,且具有生物可分解性、不含硫、無苯環化合物、燃燒排放物質較無污染,是一種兼顧環保並可永續經營的能量來源。
    本研究主要利用傳統均相鹼製程的高轉化率優點,及離子液體具高極性的特性將生質柴油中的甘油、未反應完之甲醇及觸媒NaOH萃取入同一層,不僅使得後續biodiesel的純化步驟變得較易,並可進一步提升產率。
    為消除質傳阻力對實驗的影響,進行轉速對產率之影響的探討,之後再探討離子液體種類、組成比例、加入時機對產率的影響。經實驗結果歸納得在轉酯化反應溫度60℃,轉速300rpm,醇油莫爾比6.4,NaOH添加0.28 g (0.14wt%油重)下,先讓轉酯化反應進行10分鐘後,加入30 g氯化膽鹼,即可在加入後的五分鐘將產率提高5%,並在3小時內達到93%的產率,較傳統鹼製程提高約16%。
    產率得以提升的原因為反應產生的副產物甘油和添加的氯化膽鹼形成離子液體,破壞了反應的平衡,使轉酯化反應得以持續進行,於是產率提高。


    摘要 I 目錄 II 圖目錄 V 表目錄 VI 第一章 緒論 1 第二章 文獻回顧 3 2.1 生質柴油 3 2.2 生質柴油性質 4 2.3 生質柴油製造 7 2.3.1 生質柴油發展 7 2.3.2 轉酯化反應 8 2.3.3 酸與水分對鹼製程影響 9 2.4 現階段生質柴油製程發展 10 2.5 離子液體 13 2.5.1 離子液體簡介 13 2.5.2 氯化膽鹼離子液體 13 2.5.3 離子液體於生質柴油內的應用 14 第三章 實驗材料與方法 17 3.1 研究內容 17 3.2 實驗材料 17 3.2.1 藥品 17 3.2.2 實驗設備 18 3.2.3 分析設備 18 3.3 離子液體之製備 20 3.3.1 尿素-氯化膽鹼離子液體(簡稱UCC )的製備 20 3.3.2 甘油-氯化膽鹼離子液體(簡稱GCC )的製備 20 3.4 轉酯化實驗 20 3.4.1 比較反應性實驗 錯誤! 尚未定義書籤。 3.5 分析方法 21 3.5.1 總酯及轉化率之量測與計算 21 3.5.3 產物成分分析 22 第四章 結果與討論 24 4.1 均相觸媒轉酯化反應 24 4.1.1 轉化率分析方法之建立 24 4.1.2 反應性之依據 25 4.2 反應性探討 26 4.2.1 轉速對產率的關係 26 4.2.2 使用離子液體做為觸媒(不添加NaOH)進行轉酯化實驗 27 4.2.3 添加離子液體對產率的影響 27 4.2.4 反應中添加氯化膽鹼對產率的影響 30 4.3 反應結束NaOH分布情況 31 第五章 結論 33 第六章 參考文獻 34

    Abbott A. P.,* Paul M. Cullis, Manda J. Gibson, Robert C. Harris and Emma Raven.(2007). Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chemistry
    Abbott A. P., G. Capper, D.L. Davies, R.K. Rasheed and V.Tambyrajah, (2003).Novel solvent properties of choline chloride/urea mixtures. CHEMICAL COMMUNICATIONS(1):70-71
    Abbott A. P., D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liuids. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 126(29):9142-9147
    Anastas P. T. and J.B. Zimmerman, (2003). Design through the 12 principles of green engineering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 37(5):94A-101A
    Agarwal, A. K. (1992) Performance evaluation and emission characteristics of a compression ignition engine using esterified biodiesel. Centre for Energy Studies, 82.
    Agarwal, A. K. and Das, L. M. (2001) Biodiesel development and characterization for use as a fuel in compression ignition engines. Journal of Engineering for Gas Turbines and Power-transactions of the ASME 123(2), 440-447.
    Antolin, G., Tinaut, F. V., Briceno, Y., Castano, V., Perez, C., and Ramirez, A. I. (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology 83(2), 111-114.
    ASTM International, (2005) Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM D 6304-04.
    ASTM International, (2006) Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. ASTM D 664-06.
    Billaud, F., Dominguez, V., Broutin, P., and Busson, C. (1995) Production of Hydrocarbons by Pyrolysis of Methyl-esters from Rapeseed oil. Journal of the American Oil Chemists Society 72(10), 1149-1154.
    Cetinkaya, M. and Karaosmanoglu, F. (2004) Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy and Fuels 18(6), 1888-1895.
    Fangrui, M. and Milford, A. H. (1999) Biodiesel production: a review. Bioresource Technology 70, 1-15.
    Freemantle M., (1998). Ionic liquids for clean technology. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 68 (4):351-356
    Frederique R. Abreua, Daniela G. Limaa, Elias H. Hamúa, Sandra Einloftb,Joel C. Rubima, and Paulo A.Z. Suareza,*(2003) New Metal Catalysts for Soybean Oil Transesterification. JAOCS, Vol. 80, no. 6 (2003)
    Freedman, B., Pryde, E. H., and Mounts, T. L. (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society 61(10), 1638-1643.
    Haas, M. J., Michalski, P. J., Runyon, S., Nunez, A., and Scott, K. M. (2003) Production of FAME from acid oil, a by-product of vegetable oil refining. Journal of the American Oil Chemists Society 80(1), 97-102.
    Lotero, E., Liu, Y., Loez, D. E., Suwannakarn, K., Bruce D. A. and Goodwin, J. G. Jr. (2005). Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, 44(14), 5353-5363
    Onay, O., Beis, S. H., and Kockar, O. M. (2001) Fast pyrolysis of rape seed in a well-swept fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 58, 995-1007.
    Pryde, E. H. (1984) Vegetable oils as fuel alternatives – symposium overview. Journal of the American Oil Chemists Society 61, 1609-1610.
    Pryor, R. W., Hanna, M. A., Schinstock, J. L., and Bashford, L. L. (1983) Soybean oil fuel in a small diesel engine. Transactions of the ASAE 26(2), 333-337.
    Saka, S., and Kusdiana, D. (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80(2), 225-231.
    Schwab, A.W., Bagby, M.O., and Freedman, B. (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66, 1372-1378.
    Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., and Pryde, E. H. (1988). Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists Society 65, 1781-1786.
    林政賢,(2007)以深共熔溶劑及反溶劑法制被氧化鋅粒子,國立清華大學化學工程研究所碩士論文
    巫國維,(2007)固體觸媒生產生質柴油之研究,國立清華大學化學工程研究所碩士論文

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE