簡易檢索 / 詳目顯示

研究生: 沈禹丞
Shen, Yu-Cheng
論文名稱: 基於位元錯誤率最小化準則之下行多載波MIMO-NOMA系統的資源分配技術
Resource Allocation Based on BER Minimization for a Downlink Multicarrier MIMO-NOMA System
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 鐘嘉德
Chung, Char-Dir
古聖如
Ku, Sheng-Ju
黃昱智
Huang, Yu-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 33
中文關鍵詞: 下行多載波多輸入多輸出非正交多重接取系統資源分配問題位元錯誤率
外文關鍵詞: downlink multicarrier multiple-input multiple-output, non-orthogonal multiple access system
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對完美和非完美的通道狀態信息情境,探討一個包含K個用戶與N個子載波之下行多載波多輸入多輸出非正交多重接取(MIMO-NOMA)系統的資源分配問題。首先,我們根據用戶配對、子載波配置以及各子載波上的用戶功率分配形成一個資源分配最佳化問題,以在所有用戶皆具有相同位元錯誤率(BER)效能的限制條件下,最小化系統的BER。接著,我們針對此一資源分配問題提出一個以迭代方式運作的次佳解,其中每一迭代過程包含二個部分:1)將當前具有最高BER和第二高BER的二個用戶配對起來,以及2)針對該二用戶,執行聯合子載波配置和功率分配,以在所配置之子載波上進行NOMA傳輸並最小化平均BER;上述迭代過程將持續進行,直到沒有子載波可供配置為止。另外,我們提出一個Q函數近似作法,簡化現有的BER公式,並據以對每一子載波推導出一個具有低複雜度的閉合式NOMA功率分配解。對於一個M*M 的MIMO-NOMA系統,所提出之資源分配演算法具O(N2M3 K2) 的時間複雜度,因此在實際應用上確實可行;廣泛的電腦模擬結果顯示,基於Q函數近似之功率分配方法可逼近理論效能,這也使得所提出的資源分配演算法可在不同情境下達到優異的BER效能。


    This thesis investigates the resource allocation issues for a downlink multicarrier multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) system with K users and N subcarriers under both perfect and imperfect channel state information scenarios. A resource allocation optimization problem is first formulated in terms of user pairing, subcarrier assignment, and users’ power allocation on each subcarrier to minimize the bit error rate (BER) of the system under a constraint that all the users have identical BER performance. Then, a suboptimal solution of the resource allocation problem is proposed that iteratively performs two parts of operations: 1) pairing the two users with the highest and second highest BERs at the current iteration; 2) conducting joint subcarrier assignment and power allocation for the paired two users in order to minimize the average BER of NOMA transmission on the assigned subcarrier. The above iterative procedure continues until there are no subcarriers available for assignment. Moreover, an approximation of the Q function is made to simplify existing BER expressions for deriving a low-complexity closed-form NOMA power allocation solution for each subcarrier. For an M*M MIMO-NOMA system, the proposed resource allocation scheme involves time complexity of O(N2M3 K2), which is definitely feasible for practical applications. Extensive computer simulation results demonstrate that the power allocation method based on the approximated Q-function approaches the theoretical performance very well and enables the resource allocation scheme to achieve excellent BER performance for various scenarios.

    Abstract Contents List of Figures List of Tables I. Introduction 1 II. System Model and Problem Formulation 4 III. An Iterative Resource Allocation Method for BER Minimization IV. Simulation Results 13 V. Conclusion 28 Appendix 29 References 31

    [1] C. D. Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang, and M. Liyanage, “Survey on 6G frontiers: Trends, applications, requirements, technologies and future research,” IEEE Open J. Commun. Soc., vol. 2, pp. 836–886, Apr. 2021.
    [2] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742, 2nd Quart., 2017.
    [3] B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A survey of NOMA: Current status and open research challenges,” IEEE Open J. Commun. Soc., vol. 1, pp. 179–189, Feb. 2020.
    [4] I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Z. Han, M. J. Piran, and D. Y. Suh, “A systematic review on NOMA variants for 5G and beyond,” IEEE Access, vol. 9, pp. 85573–85644, Jun. 2021.
    [5] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Okinawa, Japan, pp. 770–774, Nov. 2013.
    [6] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp.1501–1505, Dec. 2014.
    [7] L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8580–8594, Dec. 2016.
    [8] F. Fang, H. Zhang, J. Cheng and V. C. M. Leung, “Energy-efficient resource allocation for downlink non-orthogonal multiple access network,” IEEE Trans. Wireless Commun., vol. 64, no. 9, pp. 3722–3732, Sep. 2016.
    [9] B. Di, L. Song and Y. Li, “Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7686–7698, Nov. 2016.
    [10] J. Zhu, J. Wang, Y. Huang, S. He, X. You and L. Yang, “On optimal power allocation for downlink non-orthogonal multiple access systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2744–2757, Dec. 2017.
    [11] C.-L. Wang, T.-Y. Chen, Y.-F. Chen, and D.-S. Wu, “Low-complexity resource allocation for downlink multicarrier NOMA systems,’” in Proc. IEEE 29th Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Bologna, Italy, pp. 1–6, Sep. 2018.
    [12] C. -L. Wang and C. -W. Hung, “Proportional-fairness resource allocation for a downlink multicarrier NOMA System,” in Proc. Int. Conf. Signal Process. Commun. Syst. (ICSPCS), Adelaide, Australia, pp. 1–6, Dec. 2020.
    [13] C. -L. Wang, M. -H. Liu, and Y. -C. Shen, “Proportional-fairness resource allocation based on statistical channel state information for a downlink multicarrier NOMA system,” in Proc. Int. Conf. Signal Process. Commun. Syst. (ICSPCS), Sydney, Australia, pp. 1–7, Dec. 2021.
    [14] J. -H. Tseng, Y. -F. Chen and C. -L. Wang, “User selection and resource allocation algorithms for multicarrier NOMA systems on downlink beamforming,” IEEE Access, vol. 8, pp. 59211–59224, Apr. 2020.
    [15] Y.-C. Ding, “Bit-error-rate analysis and power allocation for a MIMO-NOMA system using QPSK modulation and linear minimum mean-squared error detection,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Jul. 2022.
    [16] C.-L. Wang and Y.-C. Ding, “BER analysis for a MIMO-NOMA system using QPSK modulation and linear MMSE detection,” in Proc. IEEE GLOBECOM Workshops, Kuala Lumpur, Malaysia, pp. 1–6, Dec. 2023.
    [17] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading MIMO channels with channel estimation error,” IEEE Trans. Inf.. Theory, vol. 52, no. 5, pp. 2203–2214, May 2006.
    [18] S. Roy and P. Fortier, “Maximal-ratio combining architectures and performance with channel estimation based on a training sequence,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1154–1164, Jul. 2004.
    [19] G. Strang, Introduction to Linear Algebra, int. ed. Wellesley, MA, Wellesley-Cambridge Press, 2019.
    [20] Z. H. Peric, A. V. Markovic, N. Z. Kontrec, S. R. Panic, and P. C. Spalevic, “Novel composite approximation for the gaussian Q-function,” Elektron. Elektrotech., vol. 26, no. 5, pp. 33–38, 2020.
    [21] D. Sadhwani, A. Powari and N. Mehta, “New, simple and accurate approximation for the gaussian Q function with applications,” IEEE Commun. Lett., vol. 26, no. 3, pp. 518–522, Mar. 2022.
    [22] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.
    [23] M. F. Hanif and Z. Ding, “Robust power allocation in MIMO-NOMA systems,” IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1541–1545, Dec. 2019.
    [24] Zukang Shen, J. G. Andrews and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2726–2737, Nov. 2005.
    [25] C. Mohanram and S. Bhashyam, “A sub-optimal joint subcarrier and power allocation algorithm for multiuser OFDM,” IEEE Commun. Lett., vol. 9, no. 8, pp. 685–687, Aug. 2005.

    QR CODE