簡易檢索 / 詳目顯示

研究生: 施澄昊
Shih, Cheng-Hao
論文名稱: 熱親和概念於液靜壓旋轉軸設計之應用
Application of Thermo-Friendly Concept in Design of Hydrostatic Spindle
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 林士傑
Lin, Shih-Chieh
蕭德瑛
Shaw, De-In
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 液靜壓立式旋轉軸熱親和熱變形誤差
外文關鍵詞: bearing, thermo-friendly
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高精密機械的領域中,熱變形誤差會對加工精度造成很大的影響。而根據本文實驗所使用的液靜壓軸承系統,熱誤差在所有誤差中佔了很大的比重。因此,本文引入了Okuma公司所提出的熱親和概念,試圖解決熱變形所產生的誤差問題。
    在理論方面,本文首先探討液靜壓軸承的理論與設計分析,藉由設計軸承油腔內部壓力與供給壓力之比值,使油膜剛性能達到最大;接著探討在液靜壓軸承系統中,使用定壓之液靜壓雙向墊軸承的承載力,並求出其油膜剛性表現;此外,本文之重點著重於熱親和概念在液靜壓軸承之應用,在液靜壓軸承的溫升過程中,計算其熱源的數值大小,並藉由液靜壓旋轉平台之溫度場分佈,分析出整體結構所產生之熱變形,透過機構上的調整以改善熱變形的問題。
    而在實驗規劃的部分,本文使用現有的立式旋轉台進行性能量測與分析,量測在不同油溫與負載的情況下,熱以及結構變形所產生的誤差,與剛性及迴轉精度相比較,並與理論模擬相互驗證;最終,期望能修改機構設計,以提升液靜壓軸承之性能表現。


    The thermal error happened in precision machines has a significant impact on machining accuracy. Among error sources of the experiment, this thesis confirmed that thermal error is the key factor affecting the accuracy of the hydrostatic bearing system. Therefore, this study introduces Thermo-Friendly Concept, according to Okuma, to solve the thermal error problem.
    In theory, this thesis first probes the function of the load capacity of the opposed pad hydrostatic bearing and the performance of stiffness. Secondly, this work searches the relevant literature to obtain the essential parameters, such as the oil-film thickness, land dimension, and flow rate. Most importantly, this study applies Thermo-Friendly Concept to the design of hydrostatic bearing system. By analyzing the heat sources of bearing system, this work can obtain the image of temperature field, and also receive thermal deformation by thermo-elastic model.
    This thesis conducts the experiment by using the existing vertical hydrostatic rotary bearing system. These experimental results compare the actual performance with the theoretical thermo-elastic model, and present a method to modify the model that satisfy the requirements. Finally, this study enhances the performance of hydrostatic bearing system, so better machining accuracy can be expected.

    摘要 I Abstract II 致謝 III 目錄 1 圖目錄 4 表目錄 6 符號表 7 第一章 導論 9 1-1 研究背景 9 1-2 文獻回顧 12 1-2-1 液靜壓軸承之研究 12 1-2-2 固定式節流液靜壓軸承之研究 12 1-2-3 液靜壓軸承理論誤差修正之研究 13 1-2-4 液壓軸承主軸熱變形量測之研究 14 1-3 研究動機與目的 15 第二章 液靜壓軸承理論與設計分析 17 2-1 雷諾方程式 17 2-2 Lumped Parameter Modeling 24 2-3 液靜壓軸承承載力及油膜剛性 25 第三章 熱親和概念與熱變形分析 34 3-1 熱親和概念 34 3-2 液靜壓軸承之熱源與溫度變化 36 3-3 液靜壓軸承與主軸之熱變形分析 39 第四章 實驗研究 42 4-1 實驗架設 42 4-1-1 液靜壓立式旋轉軸 42 4-1-2 供油設備系統及流體冷卻單元 43 4-1-3 量測設備 44 4-2 實驗方法與步驟 46 4-2-1 熱變形量測 46 4-2-2 剛性量測 51 4-2-3 迴轉精度量測 55 4-3 實驗結果 61 4-3-1 熱變形量測實驗結果 61 4-3-2 剛性量測實驗結果 65 4-3-3 迴轉精度量測實驗結果 67 第五章 液靜壓軸承之熱變形模擬 72 5-1 油膜獨立之熱變形模擬 73 5-1-1 進油溫改變之溫度場模擬分析 73 5-1-2 進油溫改變之熱變形模擬分析 75 5-1-3 主軸旋轉之溫度場模擬分析 77 5-1-4 主軸旋轉之熱變形模擬分析 79 5-2 熱親和概念之熱變形模擬 81 5-2-1 熱親和概念之結構優化 81 5-2-2 主軸旋轉之上部結構溫度場模擬分析 82 5-2-3 主軸旋轉之上部結構熱變形模擬分析 83 第六章 結論與未來工作 84 6-1 結論 84 6-2 未來工作 85 參考文獻 87

    [1] Girard, L.D., 1862, “Application des Surfaces Glissantes, ” , Paris.
    [2] Raimondi, A. A., Boyd, J., 1957, “An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing,” Lubr. Eng. 13(1):28-37.
    [3] Mori H. and Yabe H. “A theoretical investigation on hydrostatic bearing,” Bull. JSME Vol. 6, N0.22, p.354-363, 1963.
    [4] EI-Sherbiny M., Salam F., EI-Hefnawy N., “Optimum design of hydrostatic journal bearing: II. Minimum power.” Trib. Int. 1984;17(3):162-166.
    [5] Stanley, B.M., and Alfred, M.L., “The Effect of the Method of Compensation on Hydrostatic Bearing Stiffness,” Journal of Basic Engineering, p.179-187, 1961.
    [6] Ling, T. S., “On the optimization of the stiffness of externally pressurized bearings.” Trans. ASME. J. Basic Eng. 1962; 84:119-122.
    [7] S. C. Sharma, S. C. Jain, R. Sinhasan and R. Shalia, “Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings,” Tribology International Vol. 28, 1995, pp. 531-539.
    [8] S. C. Sharma, R. Sinhasan, S. C. Jain, N. Singh and S. K. Singh, “Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries,” Tribology Transactions, Vol.41, 1998, pp.375 – 381.
    [9] Ghosh, B., 1972, “An Exact Analysis of a Hydrostatic Journal Bearing with a Large Circumferential Sill,” Wear Vol. 21, No.2, pp.367-375
    [10] Ghosh, B., 1973, “Load and Floe Characteristic of Capillary-compensated Hydrostatic Journal Bearing, ” Wear. Vol. 23, No.3, pp.377-386.
    [11] Peklenik, J., “Zur Fertigungsstabilitat rnessgesteuerter Werkzeugmaschinen. Industrie-Anzeiger,” No.54, 1959.
    [12] Bryan, J., Carter, D., Clouser, W. and Hamilton, J., “Order of magnitude improvement in thermal stability using a liquid shower on a measuring machine,” Precision Machining Workshop S.M.E. St Paul. UCRL 87591, 1982.
    [13] McMurtry, D., “Footprinting. Renishaw Ltd.Gloucestershire,” U.K. S.M.E Tech Conf. Los Angeles, 1987.
    [14] Sugishita, H., Nishiyama, H., Nagayasu, O., Shinnou, T., Sato, H., and O-hori, M., “Development of a concrete machining center and identification of the dynamic and thermal structural behavior,” CIRP Annals, 1988.
    [15] Jedrzejewski, J., Kaczmarek, J. and Kowal, Z., “Numerical optimization of thermal behavior of machine tools,” CIRP Annals, 1990.
    [16] Dongju, C., Marc, B., Feihu, Z. and Shen, D.,” Thermal error of a hydrostatic spindle,” Precision Engineering, Vol. 35, pp. 512-520, 2011.
    [17] Smith PT, Vallance RR, and Marsh ER. Correcting capacitive displacement measurements in metrology applications with cylindrical artifacts. Precision Engineering. 2005;29(3):324-335.

    QR CODE