研究生: |
黃佩芸 Huang, Pei-Yun |
---|---|
論文名稱: |
硼摻雜型石墨烯電極與熱活化延遲螢光雙硼材料於有機發光二極體元件之應用 Boron-Doped Graphene Electrode and Thermally Activated Delayed Fluorescence Diboron Materials In Organic Electroluminescent Devices |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
陳秋炳
Cheng, Cheu-Pyeng 周鶴修 Chou, Ho-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 硼摻雜型石墨烯電極 、熱活化延遲螢光 、有機發光二極體 |
外文關鍵詞: | Boron-Doped Graphene Electrode, Thermally Activated Delayed Fluorescence, Organic light emitting diode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文第二章中,我們將硼摻雜型石墨烯電極應用於有機發光
二極體元件中,綠色磷光元件效率可達最大外部量子效率24.6 %,電流效率95.4 cd/A及功率效率99.7 lm/W,此元件的高效率主要是來自於硼摻雜型石墨烯電極高功函數的貢獻。而硼摻雜型石墨烯電極也實際應用在軟性基板上,經過撓曲測試後,片電組仍無明顯上升趨勢,元件在最佳化結構下,可達到最大外部量子效率19.4 %,電流效率75.2 cd/A,功率效率77.9 lm/W。
在第三章中,我們將具有TADF性質的雙硼材料CzDBA及tBuCzDBA應用於主發光體元件中,以CzDBA作為主發光體元件之最大外部量子效率、電流效率與功率效率分別為21.7 %、79.1 cd/A及92.6 lm/W,驅動電壓為2.0 V;以tBuCzDBA作為主發光體元件之最大外部量子效率、電流效率與功率效率分別為33.5 %、128.2 cd/A及
120.9 lm/W,驅動電壓為2.5 V,為目前文獻中主發光體元件之最高
效率紀錄。而元件的高效率除了來自TADF的貢獻外,此兩材料於主發光體中水平偶極矩的比例皆很高,CzDBA與tBuCzDBA之水平偶極矩比例分別為0.89及0.92,有助於元件出光率的提升。
In chapter II, we applied boron-doped graphene anode in green phosphorescent OLED devices. The device exhibits high performance with maximum EQE of 24.6 %, maximum current efficiency of 95.4 cd/A, maximum power efficiency of 99.7 lm/W. The improvement of the OLED performance is attributed mainly to the high work function of boron-doped graphene. We also fabricated OLED devices on flexible substrates, the sheet resistance of boron-doped graphene in the bending test only slightly increase. The devices exhibit performance with maximum EQE of 19.4 %, maximum current efficiency of 75.2 cd/A, maximum power efficiency of 77.9 lm/W.
In chapter III, we applied diboron materials with TADF character in host-emitter devices. The device with CzDBA as host-emitter exhibits performance with maximum EQE of 21.7 %, maximum current efficiency of 79.1 cd/A, maximum power efficiency of 92.6 lm/W and the device with tBuCzDBA as host-emitter exhibits high performance with maximum EQE of 33.5 %, maximum current efficiency of 128.2 cd/A, maximum power efficiency of 120.9 lm/W. The high performance of devices is attributed to TADF character and high horizontal transition dipole ratio.
第一章參考文獻
[1] Y. J. Tung, T. Ngo, M. Hack, J. Brown, N. Koide, Y. Nagara, Y. Kato,
H. Ito, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 2004, 35, 48.
[2] M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical Physics 1963, 38, 2042-2043.
[3] C.W. Tang, S.A.V., C.H. Chen, Journal of Applied Physics 1989, 65,3610.
[4] K. Yasunori, A. Nobutoshi, T. Shin-ichiro, Japanese Journal of Applied Physics 1999, 38, 5274.
[5] T. Sugimoto, K. Fukutani, Nat Phys. 2011, 7, 307-310.
[6] J. Shi, C. W. Tang, Appl. Phys. Lett. 2002, 80, 3201-3203.
[7] Li, M.; Li, W.; Su, W.; Zang, F.; Chu, B.; Xin, Q.; Bi, D.; Li, B.; Yu, T., Solid-State Electronics 2008, 52, 121-125.
[8] K. Suzuki, A. Seno, H. Tanabe, K. Ueno, Synth. Met. 2004, 143, 89-96.
[9] 陳金鑫, 黃孝文, OLED夢幻顯示器.OLED材料與元件, 2009, 240.
[10] Su, S.-J., E. Gonmori, H. Sasabe and J. Kido, Advanced Materials, 2008, 20.
[11] Su, S.J., H. Sasabe, Y. J. Pu, K. Nakayama and J. Kido, Advanced Materials, 2010, 22, 3311.
[12] 梁從主, 陳琬鎔, 曾偉菁, 科學發展月刊. 2013. p. 58.
[13] G. Gu, D.Z.G., P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, OPTICS LETTERS, 1997, 22, 396.
[14] C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys., 1989, 65, 3610.
[15] T. Förster, Disc. Faraday Soc., 1959, 27, 7.
[16] D. L. Dexter, J. Chem. Phys., 1953, 21, 836.
第二章參考文獻
[1] Sun, T.; Wang, Z. L.; Shi, Z. J.; Ran, G. Z.; Xu, W. J.; Wang, Z. Y.; Li, Y. Z.; Dai, L.; Qin, G. G. Appl. Phys. Lett. 2010, 96, No. 133301.
[2] Kim, D.; Lee, D.; Lee, Y.; Jeon, D. Y. Adv. Funct. Mater. 2013, 23, 5049−5055.
[3] Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. ACS Nano. 2010, 4, 43− 48.
[4] Seo, H. K.; Park, M. H.; Kim, Y. H.; Kwon, S. J.; Jeong, S. H.; Lee, T. W. ACS Appl. Mater. Interfaces 2016, 8, 14725− 14731.
[5] Kim, S. Y.; Kim, J. J. Org. Electron. 2012, 13, 1081−1085.
[6] Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Nat. Photonics 2012, 6, 105−110.
[7] Li, N.; Oida, S.; Tulevski, G. S.; Han, S. J.; Hannon, J. B.; Sadana, D. K.; Chen, T. C. Nat. Commun. 2013, 4, No. 2994.
[8] Han, T. H.; Kwon, S. J.; Li, N. N.; Seo, H. K.; Xu, W. T.; Kim, K. S.; Lee, T. W. Angew. Chem., Int. Ed. 2016, 55, 6197− 6201.
[9] Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Nanoscale 2016, 8, 10714− 10723.
[10] Huang, J. J.; Hung, J. H.; Ting, P. L.; Tsai, Y. N.; Gao, H. J.; Chiu, T. L.; Lee, J. H.; Chen, C. L.; Chou, P. T.; Leung, M. K. Org. Lett. 2016, 18, 672−675
第三章參考文獻
[1] Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802-4806.
[2] Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392-11394.
[3] Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. Chem. Mater. 2013, 25, 3766-3771.
[4] Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C.-J.; Cheng, C.-H.; Tseng, M.-R.; Yasuda, T.; Adachi, C. Chem. Commun. 2013, 49, 10385-10387.
[5] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature. 2012, 492, 234-238.
[6] Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, J. Y. Adv. Mater. 2015, 27, 2515-2520.
[7] Suzuki, K.; Kubo, S.; Shizu, K.; Fukushima, T.; Wakamiya, A.; Murata,Y.; Adachi, C.; Kaji, H. Angew. Chem. Int. Ed. 2015, 54, 15231.
[8] Numata, M.; Yasuda, T.; Adachi, C. Chem. Commun. 2015, 51, 9443.
[9] Park, I. S.; Numata, M.; Adachi, C.; Yasuda, T. Bull. Chem. Soc. Jpn. 2016, 89, 375.
[10] 陳金鑫, 黃孝文, OLED夢幻顯示器.OLED材料與元件, 2009
[11] In COMSOL Conference Boston, 2015.
[12] Yokoyama, D. J. Master. Chem. 2011, 21, 19187.
[13] Yokoyama, D.; Sakaguchi, A.; Suzuki, M.; Adachi, C. Appl. Phys. Lett. 2008, 93, 173302.
[14] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Appl. Phys. Lett. 2009, 95, 243303.
[15] Frischeisen, J.; Yokoyama, D.; Endo, A.; Adachi, C.; Brütting, W. Org. Electrin. 2011, 12, 809.
[16] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Master. 2014, 26, 7931.
[17] Zhang, Q.; Kuwabara, H.; William J. Potscavage, Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 136, 18070−18081.
[18] Zhang, D.; Zhao, C.; Zhang,Y.; Song, X.; Wei, P.; Cai, M.; Duan, L. ACS Appl.Mater. Interfaces 2017, 9, 4769-4777.
[19] Masui, K.; Nakanotani, H.; Adachi, C. Organic Electronics 2013, 14, 2721-2726.
[20] Guo, J.; Li, X. L.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S. J.; Tang, B. Z. Adv. Funct. Mater. 2017, 1606458.
[21] Huang, J.; Nie, H.; Zeng, J.; Zhuang, Z.; Gan, S.; Cai, Y.; Guo, J.; Su, S. J.; Zhao, Z.; Tang, B. Z. Angew. Chem. Int. Ed. 2017, 56, 12971-12976.
[22] Ly, K. T.; Chen-Cheng, R. W.; Lin, H. W.; Shiau, Y. J.; Liu, S. H.; Chou, P. T.; Tsao, C. S.; Huang, Y. C., Chi, Y. Nature Photonics 2017, 11, 63-68.
[23] Rajamalli, P.; Senthilkumar, N.; Huang, P. Y.; Chen-Cheng, R. W.; Lin, H. W.; Cheng, C. H. J. Am. Chem. Soc. 2017, 139, 10948−10951.