研究生: |
李建賢 Lee, ien-Hsien |
---|---|
論文名稱: |
Identification of Essential Lysines Involved in Substrate Binding of Vacuolar H+-Pyrophosphatase 液泡焦磷酸水解酵素中必要離胺酸參與受質接合之鑑定 |
指導教授: |
潘榮隆
Pan, ng-Long |
口試委員: |
林彩雲
Lin, Tsai-Yun 高茂傑 Kao, Mou-Chieh 蕭義勇 Hsiao, Yi-Yuong 張文綺 Chang, n-Chi 潘榮隆 Pan, ng-Long |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | H+-pyrophosphatase 、Lysine 、Chemical modification 、Site-directed mutagenesis |
外文關鍵詞: | 質子傳送焦磷酸水解酵素, 離胺酸, 化學修飾, 定點突變 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton pumping against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) to generate proton motive force for secondary transport and storage of metabolites, ions and even toxins. This unique proton pump, H+-PPase, primarily found in various endomembranes of higher plants, bacteria, and some protists, By sequence alignment there are seven highly conserved lysines in this enzyme, and, for the most part, six in cytosolic side. For realizing the functional roles of these lysines, we investigated the 18 proposed cytosolic lysine residues in mung bean H+-PPase, each of which was firstly substituted to an alanine by site-directed mutagenesis. Construction of mutants that each had a cytosolic, highly conserved lysine substituted with an alanine resulted in dramatic drops in both PPi hydrolytic and PPi-dependent H+-translocating activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+ binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition implicates that these lysines are present in the active site. The modifier fluorescein 5’-isothiocyanate (FITC), which is used to labeling lysine residue(s) in a protein, targeted a lysine at the H+-PPase active site, but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S mutants in inhibition experiment, which suggested that Lys-250 is essential for substrate binding. Moreover, the decreased coupling ratio of these mutants suggested Lys-250 may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site in enzyme-substrate complex. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis. A working model is proposed to elucidate the structural mapping of essential lysines in H+-PPase and their possible functional roles.
質子傳送焦磷酸水解酵素(簡稱H+-PPase; EC 3.6.1.1),藉由水解焦磷酸(PPi)所產生的能量,來傳送質子,提高質膜兩側的電化學梯度差。這種獨特的質子幫浦普遍存在於高等植物的液泡膜,以及某些細菌、單細胞生物的內膜。經由蛋白質序列比對,在質子傳送焦磷酸水解酵素可以找到七個高度保留的離胺酸,而其中六個離胺酸位於蛋白質突出於細胞質的部分。為了瞭解離胺酸在質子傳送焦磷酸水解酵素中,所辦演的角色與功能,我們以綠豆液泡膜上的質子傳送焦磷酸水解酵素為研究對象,將位於細胞質部分的18個離胺酸,利用定點突變法,一一將其變為丙胺酸。高度保留的離胺酸被突變為丙胺酸後,這些突變使得質子傳送焦磷酸水解酵素的水解能力與質子傳送能力大大地減低;而透過離子效應的實驗,其數據顯示位置730的離胺酸與其輔因子,鎂離子,的接合位相當接近,此外位置694與695的離胺酸則參與在抑制因子,氟離子,的接合位上。異硫氰酸螢光素(fluorescein 5'-isothiocyanate, 簡稱FITC),一種會與一級胺產生共價鍵結,而時常被用來標定蛋白質中的離胺酸的化學物質,已被知道能夠標定一個位於質子傳送焦磷酸水解酵素活化區的特定離胺酸。在化學修飾的實驗中,我們發現位於位置250處的突變株(K250A, K250N, K250T, K250S),其水解焦磷酸的活性均無法被異硫氰酸螢光素所抑制,依據這一結果,我們推論位置250處的離胺酸處於受質的接合位上;且經由活性測試,這些突變株會導致耦合率下降,說明了位置250處的離胺酸亦與質子傳送效率有關。而透過胰蛋白酵素分解實驗,實驗結果顯示位置711與位置717的離胺酸,與酵素、受質形成的複合體穩定性有關,此外,此一實驗亦證明位置250處的離胺酸,正是胰蛋白酵素作用在質子傳送焦磷酸水解酵素上的重要切點,而此實驗結果亦可再次印證,位置250的離胺酸與酵素水解活性間的重要關係。我們依此建立一個活化中心結構模式,以解釋必要離胺酸在質子傳送焦磷酸水解酵素的角色。
[1] Maeshima, M, Vacuolar H+-pyrophosphatase, (2000) Biochim. Biophys. Acta 1465, 37-51.
[2] Rea, P. A., and Poole, R. J., Vacuolar H+-translocating pyrophosphatase, (1993) Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 157-180.
[3] Li, J., Yang, H., Peer, W. A., Richter, G., Blakeslee, J., Bandyopadhyay, A., Titapiwantakun, B., Undurraga, S., Khodakovskaya, M., Richards, E. L., Krizek, B., Murphy, A. S., Gilroy, S., and Gaxiola, R. A., Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development, (2005) Science 310, 121-125.
[4] Guo, S., Yin, H., Zhang, X., Zhao, F., Li, P., Chen, S., Zhao, Y., and Zhang, H., Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis, (2006) Plant Mol. Biol. 60, 41-50.
[5] Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., Morris, J., Hirschi, K. D., and Gaxiola, R. A., Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants, (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 18830-18835.
[6] Wu, J. J., Ma, J. T., and Pan, R. L., Functional size analysis of pyrophosphatase from Rhodospirillum rubrum determined by radiation inactivation, (1991) FEBS Lett. 283, 57-60.
[7] Sato, M. H., Maeshima, M., Ohsumi, Y., and Yoshida, M., Dimeric structure of H+-translocating pyrophosphatase from pumpkin vacuolar membranes, (1991) FEBS Lett. 290, 177-180.
[8] Serrano, A., Perez-Castin˜eira, J. R., Baltscheffsky, H., and Baltscheffsky, M., Proton-pumping inorganic pyrophosphatases in some archaea and other extremophilic prokaryotes, (2004) J. Bioenerg. Biomembr. 36, 127-133.
[9] Mimura, H., Nakanishi, Y., Hirono, M., and Maeshima, M., Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis, (2004) J. Biol. Chem. 279, 35106-35112.
[10] Baltscheffsky, M., Schultz, A., and Baltscheffsky, H., H+-PPases: a tightly membrane-bound family, (1999) FEBS Lett. 457, 527-533.
[11] Drozdowicz, Y. M., and Rea, P. A., Vacuolar proton-pyrophosphatases: from the evolutionary backwaters into the mainstream, (2001) Trends Plant Sci. 6, 206-211.
[12] Fraichard, A., Trossat, C., Perotti, E., and Pugin, A., Allosteric regulation by Mg2+ of the vacuolar H+-PPase from Acer pseudoplatanus cells. Ca2+/Mg2+ interactions, (1996) Biochimie 78, 259-266.
[13] Rea, P. A., Britten, C. J., Jennings, I. R., Calvert, C. M., Skiera, L. A., Leigh, R. A., and Sanders, D., Regulation of vacuolar H+-pyrophosphatase by free calcium : A reaction kinetic Analysis, (1992) Plant Physiol. 100, 1706-1715.
[14] Hsiao, Y. Y., Pan, Y. J., Hsu, S. H., Huang, Y. T., Liu, T. H., Lee, C. H., Lee, C. H., Liu, P. F., Chang, W. C., Wang, Y. K., Chien, L. F., and Pan, R. L., Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase, (2007) Biochim. Biophys. Acta 1767, 965-973.
[15] Baykov, A. A., Dubnova, E. B., Bakuleva, N. P., Evtushenko, O. A., Zhen, R. G., and Rea, P. A., Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme, (1993) FEBS Lett. 327, 199-202.
[16] Maeshima, M., H+-translocating inorganic pyrophosphatase of plant vacuoles: inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases, (1991) Eur. J. Biochem. 196, 11-17.
[17] Takeshige, K., and Hager, A., Ion effects on the H+-translocating adenosine triphosphatase and pyrophosphatase associated with the tonoplast of Chara corallina, (1988) Plant Cell Physiol. 29, 649-657.
[18] Malinen, A. M., Belogurov, G. A., Salminen, M., Baykov, A. A., and Lahti, R., Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum, (2004) J. Biol. Chem. 26, 26811-26816.
[19] Nakanishi, Y., Saijo, T., Wada, Y., and Maeshima, M., Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase, (2001) J. Biol. Chem. 276, 7654-7660.
[20] Zhen, R. G., Kim, E. J., and Rea, P. A., Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide, (1997) J. Biol. Chem. 272, 22340-22348.
[21] Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. H., Tam, M. F., and Pan, R. L., Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide, (1999) Biochem. J. 342, 641-646.
[22] Belogurov, G. A., Turkina, M. V., Penttinen, A., Huopalahti, S., Baykov, A. A., and Lahti, R., H+-pyrophosphatase of Rhodospirillum rubrum, (2002) J. Biol. Chem. 277, 22209-22214.
[23] Hsiao, Y. Y., Van, R. C., Hung, H. H., and Pan, R. L., Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue, (2002) J. Protein Chem. 21, 51-58.
[24] Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H., and Pan, R. L., Roles of histidine residues in plant vacuolar H+-pyrophosphatase, (2004) Biochim. Biophys. Acta 1608, 190-199.
[25] Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and Pan, R. L., A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5’-isothiocyanate, (2000) Biochim. Biophys. Acta 1460, 375-383.
[26] Barik, S., Site-directed mutagenesis by double polymerase chain reaction, (1995) Mol. Biotechnol. 3, 1-7.
[27] Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A., Studies on the transformation of intact yeast cells by the LiAc/ss-DNA/PEG procedure, (1995) Yeast 11, 355-360.
[28] Kim, E. J., Zhen, R. G., and Rea, P. A., Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport, (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 6128-6132.
[29] Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, (1976) Anal. Biochem. 72, 248-254.
[30] Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, (1970) Nature 227, 680-685.
[31] Fabrichniy, I. P., Lehtiö, L., Tammenkoski, M., Zyryanov, A. B., Oksanen, E., Baykov, A. A., Lahti, R., and Goldman, A., A trimetal site and substrate distortion in a family II inorganic pyrophosphatase, (2007) J. Biol. Chem. 282, 1422-1431.
[32] Samygina, V. R., Moiseev, V. M., Rodina, E. V., Vorobyeva, N. N., Popov, A. N., Kurilova, S. A., Nazarova, T. I., Avaeva, S. M., and Bartunik, H. D., Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies, (2007) J. Mol. Biol. 366, 1305-1317.
[33] Huang, Y. T., Liu, T. H., Chen, Y. W., Lee, C. H., Chen, H. H., Huang, T. W., Hsu, S. H., Lin, S. M., Pan, Y. J., Lee, C. H., Hsu, I. C., Tseng, F. G., Fu, C. C., and Pan, R. L., Distance variations between active sites of H+-pyrophosphatase determined by fluorescence resonance energy transfer, (2010) J. Biol. Chem. 285, 23655-23664.
[34] Hsu, S. H., Hsiao, Y. Y., Liu, P. F., Lin, S. M., Luo, Y. Y., and Pan, R. L., Purification, characterization, and spectral analyses of histidine-tagged vacuolar H+-pyrophosphatase expressed in yeast, (2009) Bot. Stud. 50, 291-301.
[35] Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C., (1978) in Atlas of Protein Sequence and Structure (Dayhoff, M. O., ed) Vol. 5, supplement 3, pp. 345-351, National Biochemical Research Foundation, Washington, D. C.