研究生: |
吳健弘 Wu, Jian-Hong |
---|---|
論文名稱: |
絕緣體/拓樸絕緣體超晶格的超導相之研究 Superconducting Phases in a Superlattice composed of Normal and Topological Insulators |
指導教授: |
牟中瑜
Mou, Chung-Yu |
口試委員: |
仲崇厚
Chung, Chung-Hou 張明哲 Chang, Ming-Che |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 超導 、超晶格 、絕緣體 、拓樸絕緣體 |
外文關鍵詞: | superconductivity, superlattice, normal insulator, topological insulator |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們考慮了一個由絕緣體和拓撲絕緣體組成的超晶格,並分析了在該複合系統中可能形成的超導狀態。為了考慮電子配對,我們同時考慮了超晶格表面態之間的庫侖交互作用和電子 -聲子交互作用。庫侖勢能是通過近似求解超晶格的格林函數獲得的,而電子-聲子交互作用則通過考慮聲子來獲得。平均場理論藉由通過考慮最近鄰界面之間的交互作用來構建。於是我們獲得了間隙方程,並討論了在不同厚度範圍內不同交互作用強度的相圖。結果表明,在一定的交互作用強度下,三重態對占主導地位,此時的系統是拓撲超導體。
In this thesis, we consider a superlattice composed of normal and topological insulators and analyze the superconducting states that can form in this composite system. To consider the electron pairing, we include both the Coulomb interaction and the electron-phonon interaction between interface states in the superlattice. The Coulomb potential energy is obtained by solving the Green’s function for the superlattice approximately, while the electron-phonon interaction is included by considering the acoustic phonons. A mean field theory is constructed by considering interactions between nearest-neighbouring interfaces. We obtain the gap equations and discuss the phase diagram for different interaction strengths at different regimes of thickness. It is shown that at certain interaction strength, the triplet pairing dominates and the system is a topological superconductor.
[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[3] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).
[4] B. A. Bernevig1, T. L. Hughes1, S. C. Zhang, Science 314, 1757 (2006).
[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
[6] A. P. Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993).
[7] P. H. Chou, PhD diss., NTHU (2018).
[8] F. Xu, P. H. Chou, C. H. Chung, T. K. Lee, and C.Y. Mou, Phys. Rev. B 98, 205103 (2018). [9] C.H. Johansson and J.O. Linde, Ann. Phys. 78, 439 (1925).
[10] T. Meng and L. Balents, Phys. Rev. B 86, 054504 (2012).
[11] K. C. Weng and C. D. Hu, Sci. Rep. 6, 29919 (2016).
[12] G. Wang, X. Zhu, J. Wen, X. Chen, K. He, L. Wang, X. Ma, Y. Liu, X. Dai, Z. Fang, J. Jia, and Q. Xue, Nano Res. 3, 874 (2010).
[13] L. P. Gor’kov and E. I Rashba, Phys. Rev. Lett. 87, 037004 (2001).
[14] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
[15] D. Bessas, I. Sergueev, H.-C. Wille, J. Perßon, D. Ebling, and R. P. Hermann, Phys. Rev. B 86, 224301 (2012).
[16] L. Zhao, H. Deng, I. Korzhovska, M. Begliarbekov, Z. Chen, E. Andrade, E. Rosenthal, A. Pasupathy, V. Oganesyan, and L. K. Elbaum, Nat. Commun. 6, 8279 (2015).
[17] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
[18] P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
[19] S. Rath and S. P. Sanyal, Phys. Stat. sol.(b), 176, 63 (1993).
[20] Y. Zhang, Y. Ran, and A. Vishwanath, Phys. Rev. B 79, 245331 (2009).
[21] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012).