研究生: |
顏佳禾 Jia-He Yan |
---|---|
論文名稱: |
適用於無線都會網路通訊通道編解碼器之設計與實現 Design and Implementation of a Channel Coder/Decoder for WiMAX Communications |
指導教授: |
馬席彬
Hsi-Pin Ma |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 通道編解碼器 、順向錯誤更正碼 、無線都會網路 、理德─所羅門碼 、摺積碼 、維特比解碼器 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
順向錯誤更正碼 (FEC)廣泛的使用在無線通訊系統中,像廣播系統、行動通訊及無線區域網路等。FEC主要被使用來降低位元錯誤機率 (BER)並提高傳送資料的品質。 FEC主要分成兩部分:第一部分是里德─所羅門碼 (RS code),主要用來更正隨機連續錯誤,而另一部分是摺積碼 (Convolutional code),主要用來更正隨機位元錯誤,除了順向錯誤更正碼外,連接在摺積編碼器和調變器之間的是位元交錯器,位元交錯器主要用來防止摺積碼接收到連續的錯誤訊號並增加摺積碼的錯誤更正能力。在本篇論文中提出了一個低複雜度、高效能的里德─所羅門解碼器及適用在不同通訊標準之可變限制長度的維特比解碼器 (Viterbi decoder)。
本論文所提出的里德─所羅門編解碼器是使用平行處理的錯誤症狀計算及佛尼演算法,平行處理可以提升RS解碼器的工作頻率。我們也找到了可分離式非規則性的有限場乘法器來實現乘加器並可以降低RS解碼器的面積複雜度,最後,我們使用無除法器之Berlekamp-Massey演算法 (Inversion free Berlekamp-Massey algorithm)來實現關鍵方程式解決器,使用此種演算法可以降低關鍵方程式解決器的複雜度。
本論文所提出的維特比解碼器是增加一個額外的模組─分支計量與路徑計量間的繞線產生器 (BARG)模組,增加這個模組可以提高維特比解碼器的利用性,而且只需要花費16週期即可完成BARG模組的初始化,因此降低了BARG模組的延遲,另ㄧ個特點為使用加法、比較及選擇器 (ACS)間的分享處理,本論文只使用限制長度為7的維特比解碼器來實現限制長度最高為9的維特比解碼器。
最後,我們使用Xilinx Spartan3的實驗板來實現我們提出的順向錯誤更正碼,此更正碼包括一個高效能的RS解碼器、一個可以規劃限制長度的維特比解碼器及解交錯器,在場可程式閘陣列 (FPGA)實現中,所提出的RS解碼器可以操作在150MHz、可規劃式維特比解碼器可以操作在20MHz。
Forward error correction (FEC) is widely used in wireless communication system, such like broadcast system, mobile communication and WLAN. FEC is used to reduce bit error rate (BER) and improve data quality. There are two code types for FEC design, the first type of FEC is the Reed-Solomon code, whose errors correct capability for both random and burst errors, and the other type is the convolutional code, whose error correct capability for both random bit errors. In addition, between the convolutional encoder and the modulator is a bit interleaver, which protects the convolutional code from severe impact of burst errors and increase overall coding performance. We design a low hardware complexity and high performance Reed-Solomon decoder and reconfigurable Viterbi decoder with different constraint length for multi-standard communications in this thesis.
The proposed RS codec processor uses parallel processing to implement syndrome computation and Forney algorithm. Parallel processing improves the operation frequency of RS decoder. We also find the some implementation of finite field multiplier to reduce the area complexity, and choose inversion-free Berlekamp-Massey algorithm for key-equation solver because of the designed concern about hardware complexity decreasing.
The proposed reconfigurable Viterbi decoder adds the extra BARG module to improve the flexibility of hardware usage. It only needs 16 cycles to initialize BARG operation, so we can reduce the latency of BARG module. And other feature is we use sharing processing to implement the numbers of constraint length is nine based on Viterbi decoder with constraint length is seven.
At finally, we used a Xilinx Spartan3 development board to implement a proposed FEC with a high performance RS decoder, a reconfigurable Viterbi decoder and de-interleaver. The proposed RS decoder can operate at 150MHz; the proposed reconfigurable Viterbi decoder can operate at 20MHz for FPGA implementation.
[1] IEEE Std 802.16-2004, Oct. 2004.
[2] IEEE 802.11, IEEE Standard for Wireless LAN Medium Access Control and Physical Layer Specification, Nov. 1999.
[3] ETSI EN 300 744 (v1.2.1): Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, Jul. 1999.
[4] S. Lin and D. J. Costello, Error Control Coding 2nd-ed., Prentice-Hall, New Jersey, 2004.
[5] R. E. Blahut, Theory and Practice of Error Control Codes, Wesley, New York, 1983.
[6] G. D. Forney, “On Decoding BCH codes,” IEEE Trans. Inform. Theory, Vol. IT-11, pp. 393-403, Oct. 1965.
[7] I. S. Reed and M. T. Shih, “VLSI Design of Inverse-Free Berlekamp-Massey
Algorithm,” IEE Proc.-E, Vol. 138, pp. 295-298, Sep. 1991.
[8] G. D. Forney, “The Viterbi Algorithm,” IEEE Proc., Vol. 61, pp. 268–278, March 1973.
[9] S. Haykin, Communication Systems 4th-ed., Wiley, New York, 2001.
[10] A. Viterbi, “Error bounds for convolutional coding and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory, Vol. IT-13, pp. 260–269, April 1967.
[11] T. M. Liou, Design and Implementation of a Low Complexity WLAN Viterbi Decoder, NCTU, Master Thesis, June 2002.
[12] H. M. Shao and I. S. Reed, “On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays,” IEEE Trans. Computers, Vol. 37, pp. 1273-1280, Oct. 1988.
[13] D. V. Sarwate, “High Speed Architectures for Reed-Solomon Decoders,” IEEE Tran. VLSI Systems, Vol. 9, pp. 641-655, Oct. 2001.
[14] J. S. Chan, A low-complexity VLSI architecture of the Reed-Solomon codec, CCU, Master Thesis, July 2001.
[15] H. C. Chang and C. B. Shung, “A Reed–Solomon Product-Code (RS-PC)
Decoder Chip for DVD Applications,” IEEE Journal of Solid-State Circuits, Vol. 36, pp. 229-238, Feb. 2001.
[16] F. Lo, FPGA Realization of the Viterbi Decoder for HDSL2 Systems, NCU, Master Thesis, July 1999.
[17] Y. N. Chang and K. K. Parhi, “A 2-Mb/s 256-State 10-mW Rate-1/3 Viterbi Decoder,” IEEE Journal of Solid-State Circuits, Vol. 35, pp. 826-834, June 2000.
[18] C. B. Shung and G.. Ungerboeck, “VLSI Architectures for Metric Normalization in the Viterbi Algorithm,” IEEE Conf. SUPERCOMM/ICC, April, 1990.
[19] P. J. Black and T. H. Meng, “A 140Mb/s, 32-State, Radix-4 Viterbi Decoder,” IEEE Journal of Solid-State Circuits, Vol. 27, pp. 1877-1884, Dec. 1992.
[20] I. M. Onyszchuk, “Truncation Length for Viterbi Decoding,” IEEE Trans. Communications, Vol. 39, pp. 1023-1026, July 1991.
[21] G.. Feygin and P. G. Gulak, “Architectural Tradeoffs for Survivor Sequence Memory Management in Viterbi Decoders,” IEEE Trans. Communications, Vol. 41, pp. 425-429, March 1993.
[22] L. Song and K. K. Parhi, “Low-Complexity Modified Mastrovito Multipliers over Finite Fields GF(2m),” IEEE Proc. Circuits and Systems, Vol. 1, pp. 508-512, June 1999.
[23] L. Gao and K. K. Parhi, “Custom VLSI Design of Efficient Low Latency and Low Power Finite Field Multiplier for Reed-Solomon Codec,” IEEE Proc. Circuits and Systems, Vol. 4, pp. 574-577, June 2001.
[24] H. Lee, “High-Speed VLSI Architecture for Parallel Reed-Solomon Decoder,” IEEE Tran. VLSI Systems, Vol. 11, pp. 288-294, April 2003.
[25] A. G. Strollo and N. Petra, “An Area-Efficient High-Speed Reed-Solomon Decoder in 0.25um CMOS,” IEEE Proc. ESSCIRC 2004, Sep. 2004.
[26] IEEE Proposal 802.15-03, March 2004.
[27] M. Boo, and L. Zapata, “High-Performance VLSI Architecture for the Viterbi Algorithm,” IEEE Trans. Communications, Vol. 45, pp. 168-176, Feb. 1997.
[28] S. W. Choi and S. S. Choi, “200Mbps Viterbi Decoder for UWB,” IEEE Proc. ESSCIRC 2003, Sep. 2003.
[29] M. G. Man and O. Ahmad, “FPGA Design and Implementation of a Low-Power Systolic Array-Based Adaptive Viterbi Decoder,” IEEE Trans. Circuits and Systems, Vol. 52, pp. 350-364, Feb. 2005.
[30] P. S. Huang, Design and Implementation of a Reconfigurable Viterbi Decoder, Master Thesis, June 2001.