簡易檢索 / 詳目顯示

研究生: 張育為
Chang, Yu-Wei
論文名稱: 以矽膠楔形體封裝推拉式週期漸變光纖布拉格光柵加速度計
Silicone Wedge Encapsulated Push-Pull Chirped Fiber Bragg Grating Accelerometer
指導教授: 王立康
Wang, Li -karn
口試委員: 馮開明
Feng, Kai-Ming
劉文豐
Liu, Wen-Fung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 週期漸變光纖布拉格光柵加速度計推拉式矽膠楔形體
外文關鍵詞: Chirped, FBG, Accelerometer, Push-Pull, Silicone, Wedge
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文實現了新穎架構的溫度無感週期漸變光纖布拉格光柵加速度計,此架構以光功率解調加速度達成溫度無感,並以擠壓、拉扯彈性體內部布拉格光柵的方式產生梯度應變形成週期漸變布拉格光柵,同時我們透過Ansys模擬4種不同幾何形形狀,楔形體、圓錐體、三角柱、直接三角柱。比較其靈敏度大小,最後選用楔形體做為本論文中實驗架構的彈性體,此架構共振頻率為50Hz,靈敏度達81.962μW/g。


    In this thesis, we realize a temperature-independent chirped fiber Bragg grating accelerometer with a new structure. This structure uses optical power to calibrate acceleration to achieve temperature-independence. The acceleration exerts a force to squeeze and pull the fiber Bragg grating inside the elastomer to generates gradient strain on the fiber Bragg grating and transform it into a chirped one. At the same time, we simulate four types of geometric shapes of the elastomer through Ansys, i.e. wedge, cone, triangular column, direct triangular column, and compare their sensitivities. Eventually, a wedge-shaped elastomer body is selected as the elastic body of the experimental structure in this thesis. The resonance frequency of this structure is 50 Hz, and the sensitivity is up to 81.962μW/g.

    致謝 摘要 Abstract 目錄 第一章 緒論.............................. 1 1-1研究背景............................1 1-2文獻回顧............................2 1-3文獻探討............................5 1-4研究目的........................... 12 第二章 比較4種常見的幾何形狀其靈敏度大小............... 13 2-1 Free CAD建模........................ 13 2-2 Ansys模擬分析........................14 2-3 0~3N的應變變化隨著光纖軸方向做圖...............19 2-4 η值............................. 22 2-5 圓錐體.......................... .23 2-6 三角柱............................30 2-7 直角三角柱..........................37 2-8 四種彈性體靈敏度比較.....................44 第三章 週期漸變光纖布拉格光柵加速度計架構設計.............45 3-1架構設計理念......................... 45 3-2 架構運動方程式分析與推導.................. .47 3-3 am與as關係式推導....................... 49 3-4 Ansys模擬軟體mass振福和加速度頻率響應圖分析和公式推導.... 50 3-5 光功率和as關係式....................... 52 3-6 理論靈敏度.......................... 54 第四章 實驗系統與數據分析.......................60 4-1 實驗數據........................... 60 4-2 量測靈敏度.......................... 78 4-3 量測誤差........................... 85 第五章 結論與未來展望.........................91 參考文獻............................... 93 圖目錄 表目錄

    [1]F.J.Arregui, I.R. Matias, K.L. Cooper, and R.O. Claus,“ Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sensors Journal, vol.2, no.5, pp.482-487, Oct. 2002.

    [2]Hongyun Meng, Wei Shen, Guanbin Zhang, Xiaowei Wu, Wei Wang, Chunhua Tan, and Xuguang Huang,“ Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sensors and Actuators B:Chemical, vol.160, no.115, pp.720-723, December 2011.

    [3]Jie Cao, Minh Hieu Tu, Tong Sun, and Kenneth T.V. Grattan,“ Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sensors and Actuators B: Chemical, vol.181, pp.611-619, May 2013.

    [4]Paulo Antunes, Rui Travanca, Hugo Rodrigues, José Melo, José Jara, Humberto Varum, and Paulo André,“ Dynamic structural health monitoring of slender structures using optical sensors,” Sensors, vol.12, no.5, pp.6629-6644, May 2012.

    [5]C.-J. Huang, C.-R. Chu, T.-M. Tien, H.-Y. Yin, and P.-S. Chen,“ Calibration and deployment of a fiber-optic sensing system for monitoring debris flows,” Sensors, vol.12, no. 5, pp.5835-5849, May 2012.

    [6]Y. Zhang, Z. Yin, B. Chen, H.-L. Cui, and J. Ning,“ A novel fiber Bragg grating based seismic geophone for oil/gas prospecting,” Proc. SPIE, vol.5765, pp.1112-1121, May 2005.

    [7]R. Pomorski Linessio, K. D. M. Sousa, T. da Silva, C. A. Bavastri, P. F. D. C. Antunes, and J. C. Cardozo da Silva,“ Induction motors vibration monitoring using a biaxial optical fiber accelerometer,” IEEE Sensors J., vol.16, no. 22, pp.8075-8082, Nov. 2016.

    [8]M. Bocciolone, G. Bucca, A. Cigada, A. Collina, and L. Comolli,“ An application of FBG accelerometers for monitoring pantographs of underground trains,” Proc. SPIE, vol.7653, pp.765341-765344, Sep. 2010.
    [9]Yan Zhang, Sanguo Li, Zhifan Yin, Hong-Liang Cui, Kurt O'Donnell, Robert Pastore, Michael Pellicano, Dowell Black, and John Kosinski,“ Unattended ground sensor based on fiber Bragg grating technology,” Proc. SPIE, vol.5796, pp.133-141, May 2005.

    [10]Wenjun Zhou, Xinyong Dong, Yongxing Jin, and Chun-Liu Zhao,“ Cantilever-based FBG sensor for temperature-independent acceleration measurement,” SPIE-OSA-IEEE, vol.7634, pp.763413-763418, Nov.2009.

    [11]Yinyan Weng, Xueguang Qiao, Zhongyao Feng, Manli Hu, Jinghua Zhang, and Yang Yang,“ Compact FBG diaphragm accelerometer based on L-shaped rigid cantilever beam,” Chinese Optics Letters, vol.9, no.10, pp.100604-100607, Oct. 2011.

    [12]N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay,“ Fiber Bragg grating accelerometer with enhanced sensitivity,” Sensors and Actuators A: Physical, vol.173, no.1, pp.108-115, January 2012.

    [13]Qinpeng Liu, Zhen’an Jia, Haiwei Fu, Dakuan Yu, Hong Gao, and Xueguang Qiao,“ Double Cantilever Beams Accelerometer Using Short Fiber Bragg Grating for Eliminating Chirp,” IEEE Sensors Journal, vol.16, no.17, pp.6661-6616, September 2016.

    [14]Miguel A. Casas-Ramos and G.E. Sandoval-Romero,“ Cantilever beam vibration sensor based on the axial property of fiber Bragg grating,” Smart Structures and Systems, vol.19, no.6, pp.625-631, June 2017.

    [15]Qin Peng Liu, Xue Guang Qiao, Jan Lin Zhao, Zhen An Jia, Hong Gao, and Min Shao,“ Novel Fiber Bragg Grating Accelerometer Based on Diaphragm,” IEEE Sensors Journal, vol.12, no.10, pp.3000-3004, Oct. 2012.
    [16]Qinpeng Liu, Xueguang Qiao, Zhen’an Jia, Haiwei Fu, Hong Gao, and Dakuan Yu,“ Large Frequency Range and High Sensitivity Fiber Bragg Grating Accelerometer Based on Double Diaphragms,” IEEE Sensors Journal, vol.14, no.5, pp.1499-1504, May 2014.

    [17]Iaolei Zhang, Qiangzhou Rong, Hao Sun, Shen Yang, Liutong Yuan, and Manli Hu,“ Low-frequency fiber Bragg grating accelerometer based on a double-semicircle cantilever,” Optical Fiber Technology, vol.20, no.3, pp.190-193, June 2014.

    [18]Tianliang Li, Yuegang Tan, Xue Han, Kai Zheng, and Zude Zhou,“ Diaphragm Based Fiber Bragg Grating Acceleration Sensor with Temperature Compensation,” Sensors, vol.17, no.1, pp.218-229, January 2017.

    [19]Yunshan Zhang, Weigang Zhang, Yanxin Zhang, Lei Chen, Tieyi Yan, Song Wang, Lin Yu, and Yanping Li,“ 2-D Medium–High Frequency Fiber Bragg Gratings Accelerometer,” IEEE Sensors Journal, vol.17, no. 3, pp.614-618, February 2017.

    [20]Bing Yan and Lei Liang,“ A Novel Fiber Bragg Grating Accelerometer Based on Parallel Double Flexible Hinges,” IEEE Sensors Journal, vol.20, no.9, pp.4713-4718, May 2020.

    [21]Xinyong Dong, Bai-Ou Guan, Shuzhong Yuan, Xiaoyi Dong, and Hwa-Yaw Tam,“ Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Optics Communications, vol.202, pp.91-95, February 2002.

    [22]Lan Li, Xinyong Dong, Wenjun Zhou, and Yiling Sun,“ Temperature-Independent Accelerometer with A Strain-Chirped Fiber Bragg Grating,” SPIE-OSA-IEEE, vol.7634, pp.76340-70346, November 2009.

    [23]Xinyong Dong, P. Shum, N. Q. Ngo, Chunliu Zhao, Jianliang Yang, and C. C. Chan,“ A bandwidth-Tunable FBG Filter with fixed center wavelength,” Microwave and optical technology letters, vol.41, no.1, pp.22-24, April 2004.

    [24]Jun Wang, Gangding Peng, Zhengliang Hu, Huayong Yang, and Yongming Hu,“ Design and Analysis of a High Sensitivity FBG Accelerometer Based on Local Strain Amplification,” IEEE Sensors Journal, vol.15, no.10, pp.5442-5449, October 2015.

    [25]Kuo Li, Tommy H. T. Chan, Man Hong Yau, Theanh Nguyen, David P. Thambiratnam, and Hwa Yaw Tam,“ Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity,” Applied Optics, vol.52, no.25, pp.6401-6410, September 2013.

    QR CODE