簡易檢索 / 詳目顯示

研究生: 韓若平
Ruo-Ping Han
論文名稱: Beta 生物多樣性的統計估計
Statistical Estimation of Beta Diversity
指導教授: 趙蓮菊
Anne Chao
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 127
中文關鍵詞: 生物多樣性多群落
外文關鍵詞: beta, alpha, gamma
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要

    生態學田野調查中的樣本往往無法包含全部的物種,因此在估計生物多樣性的過程中,「樣本涵蓋率」(sample coverage) 的概念扮演重要的腳色。正確的估計樣本涵蓋率有助於建構更精確的生物多樣性估計量。目前有關於樣本涵蓋率估計量的文獻都只限於單一群落產生的樣本,因此只能處理 alpha 多樣性的估計問題,對於用樣本涵蓋率處理多群落的 gamma多樣性的估計問題的文獻則十分缺乏。本論文將單一群落的樣本涵蓋率估計量推廣到多群落,因此對於估計 Shannon 指標的問題,在群落權數和樣本數成比例的條件下,得以將具有 Horvitz-Thompson 估計型式的 Chao & Shen (2003) 的 alpha 多樣性估計量推廣到 gamma 多樣性估計量。同時因為在 Shannon 指標之下,beta 多樣性即為 gamma 多樣性的自然指數除以 alpha 多樣性的自然指數,因此亦得到 beta 多樣性的估計量。不僅對於 Shannon 指標,對於具統合性的 Hill 指標,也得以藉著多群落的樣本涵蓋率估計量得到 gamma多樣性的適當估計。

    本篇論文提出的 beta 多樣性估計量需要假設群落的真權數和樣本數成比例,才會具有小偏誤 (bias)。 本文並證明在此假設下,提出的 beta 估計量具有一致性 (consistency)。至於 beta 多樣性估計量標準差的估計,則是利用拔靴法 (bootstrapping) 求得。由模擬比較顯示,在小樣本時,本文提出的 beta 多樣性估計量比摺刀法 (Jackknife) 具有更小的偏誤;在大樣本時,則反過來,摺刀法的偏誤較小。

    在實例分析方面,分別分析來自中美洲的 6 座森林演替資料、6 大洲原生纖毛類資料和熱帶雨林樹冠層及樹底層蝴蝶群落資料。藉著估計兩兩群落或三群落的 Shannon 指標的beta 多樣性,分別了解雨林演替和樹種大小的關係、原生纖毛類多樣性差異和地緣的關係、及樹冠層和樹底層蝴蝶群落的差異性,以驗證本文提出的 beta多樣性估計量的實際應用效果。


    目錄 論文摘要 i 致謝辭 iii 第一章 緒論 1 第二章 符號介紹及相關文獻回顧 4 § 2.1 符號定義 4 § 2.2 Hill 數值 5 § 2.3 Whittaker 的 beta 多樣性指標 7 § 2.4 ANOVA 加法分解 8 § 2.5 關於估計 Shannon 指標 10 第三章 Hill 數值的估計及模擬研究 17 § 3.1 Hill 數值的估計 17 § 3.2 估計量模擬比較 29 第四章 估計 Shannon 指標 34 § 4.1 估計 alpha 多樣性 34 § 4.2 估計 gamma 多樣性 40 § 4.2.1 混合樣本出現一次的物種數 40 § 4.2.2 定義混合樣本的樣本涵蓋率及其導證 41 § 4.2.3 Hill 數值的估計及其模擬研究 46 § 4.2.4 Horvitz-Thompson 型式的估計 58 § 4.3 估計 beta 多樣性 67 § 4.3.1 估計 beta 多樣性 68 § 4.3.2 提出的 beta 多樣性估計量具一致性 82 § 4.3.3 用 Hill 數值極限估計 Shannon 指標 88 § 4.3.4 beta 多樣性指標和 Sorensen 及 Jaccard 指標的關係 97 第五章 實例分析 100 § 5.1 熱帶雨林資料 100 § 5.2 原生纖毛類資料 107 § 5.3 蝴蝶資料 113 第六章 結論和後續研究 119 附錄 三群落的樣本涵率估計量導證 121 參考文獻 125

    參考文獻
    [1] Antos, A. & Kontoyiannis, I. (2001), “Convergence properties of functional estimates for discrete distributions”, Random Structures and Algorithms, 19, 163-193.

    [2] Basharin, G.P. (1959), “On a statistical estimate for the entropy of a sequence of independent random variables”, Theory of Probability and Its Applications, 4, 333-336.

    [3] Chao, A. (1984), “Nonparametric estimation of the number of classes in a population”, Scandinavian Journal of Statistics, 11, 265-270.

    [4] Chao, A. & Shen, T.J.(2003), “Nonparametric estimation of Shannon index of diversity when there are unseen species”, Environmental and Ecological Statistics, 10, 429-443.

    [5] Chao, A., Shen, T.J. & Hwang, W.H. (2006), “Application of Laplace’s boundary-mode approximations to estimate species and shared species richness”, Australian and New Zealand Journal of Statistics, 48, 117-128.

    [6] Colwell, R.K. & Futuyma, D.J.(1971), “On the measurement of niche breadth and overlap”, Ecology, 52, 567-576.

    [7] Good, I.J. (1953), “The population frequencies of species and the estimation of population parameters”, Biometrika, 40, 237-264.

    [8] Hill, M.O.(1973), “Diversity and evenness: a unifying notation and its consequences”, Ecology, 54, 427-432.

    [9] Horvitz, D.G. & Thompson, D.J. (1952), “A generalization of sampling without replacement from a finite universe”, Journal of the American Statistical Association, 47, 663-685.

    [10] Hurlbert, S.H.(1971), “The non-concept of species diversity: a critique and alternative parameters”, Ecology, 52, 577-586.

    [11] Jost, L. (2007), “Partitioning diversity into independent alpha and beta components”, Ecology, 88(10), 2427–2439.

    [12] Lande, R.(1966), “Statistics and partitioning of species diversity, and similarity among multiple communities”, Oikos, 76, 5-13.

    [13] MacArthur, R.H.(1965), “Patterns of species diversity”, Biological Reviews, 40, 510-533.

    [14] Norris III, J.L. & Pollock, K.H. (1996), “Nonparametric MLE under two closed capture-recapture models with heterogeneity”, Biometrics,52, 2, 639-649.

    [15] Norris III, J.L. & Pollock, K.H. (1998), “Nonparametric MLE for Poisson species abundance models allowing for heterogeneity between species”, Environmental and Ecological Statistics, 5, 391-402.

    [16] Patil, G.P. & Taillie, C.(1982) “Diversity as a concept and its measurement”, Journal of the American Statistical Association, 77, 548-561.

    [17] Peet, R.K.(1974), “The measurement of species diversity”, Annual Review of Ecology and Systematics, 5, 285-307.

    [18] Pielou, E.C.(1972), “ Niche width and niche overlap: a method for measuring them”, Ecology, 53,687-692.

    [19] Quenouille, M. (1956), “Notes on bias in estimation”, Biometrika, 43, 353-360.

    [20] Routledge, R.D.(1977), “On Whittaker’s components of diversity”, Ecology, 58, 1120-1127.

    [21] Schechtman, E. & Wang, S. (2004), “Jackknifing two-sample statistics”, Journal of Statistical Planning and Inference, 119, 329-340.

    [22] Shannon, C.E. & Weaver, W.(1949), “The mathematical theory of communication”, Urbana, IL: University of Illinois Press.

    [23] Simpson, E.H.(1949), “Measurement of diversity”, Nature,163,688.

    [24] Vu, V.Q., Yu, B. & Kass, R.E. (2007), “Coverage-adjusted entropy estimation”, Statistics in Medicine, 26, 4039-4060.

    [25] Whittaker, R.H.(1960), “Vegetation of the Siskiyou Mountains, Oreron and California, Ecological Monograph, 30, 279-338.

    [26] Whittaker, R.H.(1972), “Evolution and measurement of species diversity”, Taxon, 21, 213-251.

    [27] Zahl, S (1977), “Jackknifing an index of diversity”, Ecology, 58, 907-913.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE