研究生: |
余柏廷 Yu, Bo Ting |
---|---|
論文名稱: |
Epithelial-to-mesenchymal transition in zebrafish epicardium is associated with inflammatory response during heart regeneration 發炎反應對於斑馬魚心外膜細胞間質化的影響及機制之探討 |
指導教授: |
莊永仁
Chuang, Yung Jen |
口試委員: |
王文德
吳長益 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 斑馬魚 、心外膜 、間質化 |
外文關鍵詞: | Zebrafish, Epicardium, Epithelial-to-mesenchymal transition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心血管疾病的高致死率,對人類的健康造成極大威脅,在已開發國家中造成的死亡人數比率甚至高於癌症。心肌梗塞的發生,主要是因為血栓在冠狀動脈中堆積使得血管的堵塞,進而導致下游心肌細胞無法藉由血液獲取養分及氧氣而壞死。雖然在哺乳動物上已被證實心肌確實具有微弱的細胞再生能力,但由於再生速度非常緩慢而無法完整修復心臟之功能,最終導致心衰竭而死亡。
相較於哺乳類,斑馬魚在多種器官上擁有非常強大的修復能力,其中也包含心臟。儘管將斑馬魚心臟裁切掉原有的五分之一,經過約莫一個月後,受損部位即可再生回來且功能完好如初,因此斑馬魚在目前再生醫學領域中成為一個非常重要的研究工具。在早期文獻中指出,在斑馬魚心臟損傷初期,心外膜會開始增生並將傷口區域包裹起來,並且表現一些只在發育階段時活化的轉錄調控因子,進而使心外膜細胞進行間質化,藉由這過程,心外膜細胞會進行去分化,再轉變成具有分化能力的前驅細胞,而這些前驅細胞已被證實在心臟修復過程中,能夠分化成多種構成心臟的必要單元,例如: 血管內皮層細胞、內皮層細胞、纖維母細胞…等,進而對受損部位進行修復。
從傷口修復的基本步驟來看,過程包含凝血、發炎反應、組織新生、組織重塑…等重要過程,彼此都有部份時序重疊且互相影響;根據先前的研究成果已證實發炎反應對於斑馬魚進行後續心臟修復過程來說是非常重要的啟動步驟,但發炎反應又是如何去啟動下一階段的修復過程,也就是心外膜細胞的間質化,至今仍未被釐清,因此本篇研究主題是要找出能夠連接發炎反應以及心外膜細胞間質化的關鍵調控分子。實驗結果顯示,前列腺素PGE2可能是此關鍵調控分子,它能夠藉由轉化生長因子-β(TGF-β)訊息傳遞去促使心外膜細胞進行間質化;此外,在活體實驗上也發現到在受傷初期轉化生長因子-β訊息傳遞能夠促使心外膜細胞的活化。這些結果可讓我們釐清生物體在修復受損心臟的過程中所參與的機制以及關鍵性分子,進而應用在未來人類心臟修復的療法以及相關藥物之開發。
Myocardial infarction (MI) occurs when cardiac circulation is disrupted by coagulation, and the affected myocardium was damaged due to insufficient supply of blood. Failure to repair and regenerate damaged cardiac tissues after MI is a major cause of heart failure in human. In contrast, zebrafish heart has an extraordinary regenerative capacity. During zebrafish heart regeneration, the epicardium is activated and undergoes epithelial-to-mesenchymal transition (EMT) to generate epicardium-derived cells (EPDCs). EPDCs then migrate into the injured area where they generate various cell types to replace the damaged tissues.
From our previous studies, it has been demonstrated that inflammation response is critical for triggering the regeneration process in zebrafish heart post injury. However, how the inflammation acts to activate the subsequent regenerative event, namely EMT of epicardium, is still unclear. To gain insight on this question, we targeted the COX-2/PGE2 pathway and aimed to verify whether PGE2 is the key mediator to connect inflammation with EMT during heart regeneration. For this study, we adapted an in vitro cell-based model of zebrafish epicardial cells to accompany in vivo assay as the research system. The epicardial primary cells had an epithelium-like morphology and markedly expressed the cell surface marker tight junction protein 1 (ZO-1). After PGE2 treatment, epicardial cells changed into a spindle-shaped morphology and lost the expression of ZO-1, which is consistent with the known characters of EMT. Interestingly, the expression of ZO-1 was partial restored when we treated the cells with a chemical TGF-β inhibitor SB-431542 (iALK5), which was further verified in vivo. In summary, we concluded that PGE2 is an epithelial-mesenchymal-transition mediator, whose function is mediated through the induction of TGF-β signaling pathway during zebrafish heart regeneration.
1. Bui, A.L., T.B. Horwich, and G.C. Fonarow, Epidemiology and risk profile of heart failure. Nat Rev Cardiol, 2011. 8(1): p. 30-41.
2. van den Borne, S.W., et al., Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol, 2010. 7(1): p. 30-7.
3. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67.
4. Information, F.C.H., Zebrafish Make a Splash in FDA Research. 2013.
5. McGrath, P. and C.Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today, 2008. 13(9-10): p. 394-401.
6. Poss, K.D., L.G. Wilson, and M.T. Keating, Heart regeneration in zebrafish. Science, 2002. 298(5601): p. 2188-90.
7. Wang, J., et al., The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development, 2011. 138(16): p. 3421-30.
8. Chablais, F., et al., The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol, 2011. 11: p. 21.
9. Poss, K.D., Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol, 2007. 18(1): p. 36-45.
10. Choi, W.Y. and K.D. Poss, Cardiac regeneration. Curr Top Dev Biol, 2012. 100: p. 319-44.
11. Lepilina, A., et al., A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 2006. 127(3): p. 607-19.
12. Asli, N., M. Xaymardan, and R. Harvey, Epicardial Origin of Resident Mesenchymal Stem Cells in the Adult Mammalian Heart. Journal of Developmental Biology, 2014. 2(2): p. 117-137.
13. Masters, M. and P.R. Riley, The epicardium signals the way towards heart regeneration. Stem Cell Res, 2014. 13(3 Pt B): p. 683-92.
14. Gonzalez-Rosa, J.M., et al., Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development, 2011. 138(9): p. 1663-74.
15. Singh, M. and J. Epstein, Epicardial Lineages and Cardiac Repair. Journal of Developmental Biology, 2013. 1(2): p. 141-158.
16. van Wijk, B., et al., Cardiac regeneration from activated epicardium. PLoS One, 2012. 7(9): p. e44692.
17. Kovacic, J.C., et al., Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation, 2012. 125(14): p. 1795-808.
18. Kim, J., et al., PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci U S A, 2010. 107(40): p. 17206-10.
19. Kalinski, P., Regulation of immune responses by prostaglandin E2. J Immunol, 2012. 188(1): p. 21-8.
20. Dohadwala, M., et al., Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res, 2006. 66(10): p. 5338-45.
21. Neil, J.R., et al., Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-beta through a PGE2-dependent mechanisms. Carcinogenesis, 2008. 29(11): p. 2227-35.
22. M, W., The Zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio). 1993.
23. Huang, W.C., et al., Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish, 2010. 7(3): p. 297-304.
24. Chablais, F. and A. Jazwinska, The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling. Development, 2012. 139(11): p. 1921-30.
25. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
26. Kim, J., et al., In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat Protoc, 2012. 7(2): p. 247-55.
27. Bax, N.A., et al., In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFbeta-signaling and WT1. Basic Res Cardiol, 2011. 106(5): p. 829-47.
28. Takai, E., M. Tsukimoto, and S. Kojima, TGF-beta1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-beta1. PLoS One, 2013. 8(10): p. e76346.
29. Weber, C.E., et al., Epithelial-mesenchymal transition, TGF-beta, and osteopontin in wound healing and tissue remodeling after injury. J Burn Care Res, 2012. 33(3): p. 311-8.
30. Speirs, C.K., et al., Prostaglandin Gbetagamma signaling stimulates gastrulation movements by limiting cell adhesion through Snai1a stabilization. Development, 2010. 137(8): p. 1327-37.
31. Sabbah, M., et al., Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat, 2008. 11(4-5): p. 123-51.
32. Chen, W. and N.G. Frangogiannis, Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta, 2013. 1833(4): p. 945-53.
33. Jazwinska, A., R. Badakov, and M.T. Keating, Activin-betaA signaling is required for zebrafish fin regeneration. Curr Biol, 2007. 17(16): p. 1390-5.
34. Kikuchi, K., et al., tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development, 2011. 138(14): p. 2895-902.
35. Huang, W.C., et al., Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish. PLoS One, 2013. 8(6): p. e66613.
36. Takeichi, M., et al., The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One, 2013. 8(2): p. e57829.
37. Frangogiannis, N.G., The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol, 2014. 11(5): p. 255-65.
38. Bujak, M. and N.G. Frangogiannis, The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res, 2007. 74(2): p. 184-95.
39. Cleutjens, J.P., et al., Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol, 1995. 147(2): p. 325-38.
40. Okada, H., et al., Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation, 2005. 111(19): p. 2430-7.
41. Ikeuchi, M., et al., Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res, 2004. 64(3): p. 526-35.