研究生: |
許紘愷 Hsu, Hong-Kai |
---|---|
論文名稱: |
具電壓相依檢測能力之超快瞬態吸收光譜學系統 A Voltage-Dependent Ultrafast Transient Absorption Spectroscopy System |
指導教授: |
楊尚達
Yang, Shang-Da |
口試委員: |
朱立岡
Chu, Li-Kang 陳鎧 Chen, Kai |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 瞬態吸收光譜學 、超短脈衝生成 、多重薄片連續頻譜 、雷射相關性 、加電壓的瞬態吸收光譜學 |
外文關鍵詞: | Transient Absorption Spectroscopy, Ultrashort pulse generation, Multiple-plate continuum, Laser correlation, Transient Absorption spectroscopy under applied voltage |
相關次數: | 點閱:52 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
瞬態吸收光譜學(Transient Absorption Spectroscopy, TAS)是一個非常成熟的光譜技術,主要用於探測分子、材料或甚至生物系統中的超快過程,能捕捉並分析材料中整個瞬態過程的載流子動力學。然而,在半導體產業中,對電子元件施加電壓並觀察其影響是非常重要的,在這過程能幫助了解和改進元件性能,確保其在實際應用中的可靠性和效率,本文旨在利用瞬態吸收光譜學來研究這一現象。
在傳統瞬態吸收光譜的量測中,需要分別量測有電壓與無電壓的情況,才能得到所需的結果。其中,本文提出了藉由改良了硬體與軟體的架構,實現在一次性的量測中,能同時獲得有無電壓與激發的資訊。這樣的改良能夠排除雷射相關性的問題,從而提高數據的準確性和一致性,並節省測量時間。
本篇文章使用了增益介質為Yb:KGW的商用雷射(Pharos),通過多重薄片連續頻譜的展頻技術,實現了利用寬頻光源在瞬態吸收光譜學的應用。其中,實驗上所使用的樣品為氯鋁酞菁(ClAlPc)的薄膜樣品,其瞬態吸收的光譜量測著重於去探測於對樣品施加電壓與未施加電壓的情況下,對於材料上會有何種影響,並且是否能在瞬態吸收光譜中看到其變化。
但實際量測結過不如預期,其原因為改良後的架構會使用到相鄰四發脈衝去作瞬態吸收的運算,有別於傳統的相鄰兩發脈衝運算,這樣的改良會提高整體的雜訊等級,雖然能看到特徵訊號,但實際量測的訊雜比不如傳統。這種現象表明,改良後的架構雖然在理論上具備優勢,但在實際應用中,仍需要進行優化以減少雜訊,提升測量結果的品質。
這個技術不僅能提升了瞬態吸收光譜學的應用範圍,也為深入研究載流子動力學提供了更可靠的方法。通過本研究,希望能為未來在材料科學和半導體研究中的瞬態吸收光譜技術上提供新的見解和方法。
Transient Absorption Spectroscopy (TAS) is a maturely developed spectroscopic technique primarily used to probe ultrafast processes in molecules, materials, and even biological systems, enabling the capture and analysis of the entire transient process involving carrier dynamics and mechanisms within the material.
In the semiconductor industry, applying voltage to electronic components and observing its effects is crucial, as this process helps in understanding and improving component performance, ensuring reliability and efficiency in practical applications. This thesis aims to utilize transient absorption spectroscopy to investigate this phenomenon.
In traditional transient absorption spectroscopy measurements, it is necessary to measure conditions with and without voltage separately to obtain the desired results. This thesis proposes an improvement in hardware and software architecture, enabling simultaneous measurement of voltage and excitation information in a single measurement. This improvement eliminates laser correlation issues, enhancing the accuracy and consistency of the data while saving measurement time.
In this study, we used a commercial laser (Pharos) with the gain medium of Yb. By employing a technique of spectral broadening using Multiple-plate continuum, we achieved the application of broadband light sources in transient absorption spectroscopy. The sample used in this study was a thin film of ClAlPc, and the transient absorption measurements focused on investigating the effects of applying voltage to the sample and whether such changes could be observed in the transient absorption spectra.
However, the actual measurement results were not as expected. The reason is that the improved architecture uses four adjacent pulses for transient absorption calculations, unlike the traditional method which uses two adjacent pulses. This modification increases the overall noise level. Although characteristic signals can be observed, the signal-to-noise ratio in actual measurements is not as good as with the traditional method. This phenomenon indicates that while the modified setup has theoretical advantages, further optimization is needed in practical applications to reduce noise and improve the quality of the measurement results.
This technology not only broadens the application scope of transient absorption spectroscopy but also provides a more reliable method for in-depth studies of carrier dynamics. Through this research, we aim to offer new insights and methodologies for future transient absorption spectroscopy techniques in materials science and semiconductor research.
[1] Ceroni , P. The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques.; Springer, 2011.
[2] Tomi K. Baikie, D. K., Joshua M. Lawrence, Victor Gray, Christoph Schnedermann, Robin Horton, Joel D. Collins, Hitesh Medipally, Bartosz Witek, Marc M. Nowaczyk, Jenny Zhang, Laura Wey, Christopher J. Howe, Akshay Rao. Ultrafast In vivo Transient Absorption Spectroscopy. arXiv (Physics > Biological Physics) 2023. DOI: 10.48550/arXiv.2307.09448.
[3] Knowles, K. E.; Koch, M. D.; Shelton, J. L. Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: spectroelectrochemistry, microscopy, and identification of thermal contributions. Journal of Materials Chemistry C 2018, 6 (44), 11853-11867. DOI: 10.1039/c8tc02977f.
[4] Huang, X.; Chen, C.; Sun, F.; Chen, X.; Xu, W.; Li, L. Enhancing the Carrier Mobility and Bias Stability in Metal-Oxide Thin Film Transistors with Bilayer InSnO/a-InGaZnO Heterojunction Structure. Micromachines (Basel) 2024, 15 (4). DOI: 10.3390/mi15040512.
[5] Li, Z.; Liu, J.; Ou, H.; Hu, Y.; Zhu, J.; Huang, J.; Liu, H.; Tu, Y.; Qi, D.; Hao, Q.; et al. Enhancement of Carrier Mobility in Multilayer InSe Transistors by van der Waals Integration. Nanomaterials (Basel) 2024, 14 (4). DOI: 10.3390/nano14040382.
[6] Kaur, G.; Shukla, A.; Sinha, A.; Debnath, K.; Justice Babu, K.; Bhatt, H.; Waghmare, U. V.; Ghosh, H. N. Ultrafast glimpses of the excitation energy-dependent exciton dynamics and charge carrier mobility in Cs(2)SnI(6) nanocrystals. Nanoscale 2023, 15 (34), 14081-14092. DOI: 10.1039/d3nr02342g.
[7] Pendlebury, S. R.; Wang, X.; Le Formal, F.; Cornuz, M.; Kafizas, A.; Tilley, S. D.; Gratzel, M.; Durrant, J. R. Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J Am Chem Soc 2014, 136 (28), 9854-9857. DOI: 10.1021/ja504473e
[8] Grigioni, I.; Ganzer, L.; V. A. Camargo, F.; Bozzini, B.; Cerullo, G.; Selli, E. In Operando Photoelectrochemical Femtosecond Transient Absorption Spectroscopy of WO3/BiVO4 Heterojunctions. ACS Energy Letters 2019, 4 (9), 2213-2219. DOI: 10.1021/acsenergylett.9b01150.
[9] Kang, Y.; Wang, X.; Zhang, T.; Zhao, W. Single-photon ranging lidar based on multi-repetition-rate pulse train correlation and accumulation. Opt Lett 2024, 49 (6), 1628-1631. DOI: 10.1364/OL.511411 From NLM PubMed-not-MEDLINE.
[10] Tamming, R. R.; Lin, C.-Y.; Hodgkiss, J. M.; Yang, S.-D.; Chen, K.; Lu, C.-H. Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy. Scientific Reports 2021, 11 (1), 12847. DOI: 10.1038/s41598-021-92102-5.
[11] Keller, U. Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications; Springer International Publishing, , 2022.
[12] Shih, C.-J., Lin, C.-Y., Chen, K., et al. . Semi-Transparent, Pixel-Free Upconversion Goggles with Dual Audio-Visual Communication. Advanced Science 2023,10(31), 2302631. DOI: 10.1002/advs.202302631
[13] Dobryakov, A. L.; Kovalenko, S. A.; Ernsting, N. P. Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution. J Chem Phys 2005, 123 (4), 044502. DOI: 10.1063/1.1948383.
[14] Lorenc, M.; Ziolek, M.; Naskrecki, R.; Karolczak, J.; Kubicki, J.; Maciejewski, A. Artifacts in femtosecond transient absorption spectroscopy. Applied Physics B: Lasers and Optics 2002, 74 (1), 19-27. DOI: 10.1007/s003400100750.