簡易檢索 / 詳目顯示

研究生: 謝其軒
Hsieh, Chi-Hsuan
論文名稱: 傳送參考超寬頻通訊系統之效能分析
Performance Analysis of Transmitted-Reference Ultra-Wideband Communication Systems
指導教授: 趙啟超
Chao, Chi-chao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 55
中文關鍵詞: 超寬頻傳送參考自相關接收機訊號干擾雜訊比
外文關鍵詞: ultra-wideband (UWB), transmitted-reference (TR), autocorrelation receiver, signal-to-interference-plus-noise ratio (SINR)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在不遠的將來,對於低成本高速度短距離無線通訊的需求將變得相當強勁,而超寬頻 (Ultra-wideband, UWB) 正是能夠符合此需求的一項前瞻技術。由於超寬頻訊號的極大頻寬,超寬頻系統能夠提供優於傳統系統的諸多好處,例如在多重路徑通道中的強韌性,能與其他系統共存於相同的頻帶,提供高速的傳輸速度,以及極佳的時間解析度。
    相較於由接收端自行產生參考訊號以檢測接收訊號的方式,傳送參考 (Transmitted-Reference, TR) 通訊技術已逐漸在學界與業界間獲得廣泛重視,因為該技術能夠免除超寬頻同調接收機在估測通道的高複雜度以及在時間同步上的嚴格要求,而傳送參考系統只需要使用簡單的自相關接收機即可完成資料檢測。
    在本論文中,我們將針對傳送參考超寬頻系統的效能進行研究。雖然先前已有許多該系統效能分析的文獻,但是考慮到實際超寬頻通道統計特性的精確分析結果仍尚未被提出。在本計畫中所考慮的廣義通道架構,將能夠用來描述各種實際的超寬頻通道模型,例如在IEEE 802.15.3a 相關標準制訂中提出的模型。而在此通道架構上所發展出的分析結果,將可進一步應用於系統的設計與最佳化。
    我們首先在IEEE802.15.3a 的超寬頻通道模型下精確分析傳統傳送參考系統的訊號干擾雜訊比 (Signal-to-Interference-Plus-Noise Ratio, SINR),並將此結果進一步應用於系統最佳化上,例如由訊號干擾雜訊比的分析獲致最佳的積分區間長度,以及不同的傳送參考超寬頻系統間的效能比較。在足夠大的脈衝間距假設下,同源訊干擾可被忽略以利簡化分析。


    In the near future, there will appear a strong demand for low-cost high-speed wireless technology for short-range communications. One very promising technology for such demand is called ultra-wideband (UWB). Owing to its ultra-wide bandwidth, a UWB system has potential advantages over conventional systems, such as robustness to multipath fading, coexistence with other systems using the same band, high data rate capability, and fine time resolution.
    As a low-complexity alternative to conventional locally-generated reference schemes, the transmitted-reference (TR) signaling has been gaining increasing popularity and interests among academia and industry. The TR system has a reference signal transmitted along with the data, which eliminates the need for channel estimation and stringent acquisition. Hence, only a simple autocorrelation receiver is required for data detection.
    In this thesis, we pursue a generic framework for a comprehensive study of performance analysis for TR-UWB systems. Even though there were related works in the literature on TR-UWB systems, exact results which can precisely capture realistic UWB channel statistics are still missing. We conduct exact evaluation of the signal-to-interference-plus-noise ratio (SINR) for TR systems over the channel structure adopted by the IEEE 802.15.3a Task Group which can describe various realistic UWB channel phenomena. Large pulse separations are assumed so that inter-pulse, inter-block, and inter-symbol interferences can be ignored in order to reach useful closed form results. System optimization, e.g., finding the best mean channel energy capture ratio for optimal SINR, and the performance comparison among different TR systems are then carried out. Compared with the previous methodology which requires extensive simulations, our analytical results can provide a more efficient and insightful way to receiver design and optimization.

    摘要……………………………………………………………………1 致謝……………………………………………………………………2 目錄……………………………………………………………………3 附錄 英文論文本……………………………………………………4

    [1] R. A. Scholtz, “Multiple access with time-hopping impulse modulation” in Proc. IEEE Military Commun. Conf., Boston, MA, Oct. 1993, pp. 447-450.
    [2] M. Z. Win and R. A. Scholtz, “Impulse radio: how it works,” IEEE Commun. Lett., vol. 2, pp. 36-38, Feb. 1998.
    [3] ----, “On the robustness of ultra-wide bandwidth signals in dense multipath environments,” IEEE Commun. Lett., vol. 2, pp. 51-53, Feb. 1998.
    [4] ----, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun., vol. 48, pp. 679-689, Apr. 2000.
    [5] R. A. Scholtz, R. Weaver, E. Homier, J. Lee, P. Hilmes, A. Taha, and R. Wilson, “UWB radio deployment challenges,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, London, UK, Sept. 2000, pp. 620-625.
    [6] F. Ramirez-Mireles, “Performance of ultrawideband SSMA using time hopping and Mary PPM,” IEEE J. Select. Areas Commun., vol. 19, pp. 1186-1196, June 2001.
    [7] “Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,” Federal Comunications Commission, FCC First Report and Order, ET-Docket 98-153, Feb. 2002.
    [8] R. Fisher et al., “DS-UWB physical layer submission to 802.15 task group 3a,” IEEE doc.: IEEE P802.15-04/0137r3, July 2004.
    [9] A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE doc.: IEEE P802.15-03/268r3, Mar. 2004.
    [10] R. Hoctor and H. Tomlinson, “Delay-hopped transmitted-reference RF communications,” in Proc. IEEE Int. Conf. Ultra-Wideband Systems Tech., Baltimore, MD, May 2002, pp. 265-269.
    [11] J. D. Choi and W. E. Stark, “Performance of ultra-wideband communications with suboptimal receivers in multipath channels,” IEEE J. Select. Areas Commun., vol. 20, pp. 1754-1766, Dec. 2002.
    [12] M. Ho, V. Somayazulu, J. Foerster, and S. Roy, “A di_erential detector for an ultrawideband communications system,” in Proc. IEEE Veh. Tech. Conf., Birmingham, AL, May 2002, pp. 1896-1900.
    [13] A. Rabbachin and I. Oppermann, “Comparison of UWB transmitted reference schemes,” IEE Proc. Commun., vol. 153, pp. 136-142, Feb. 2006.
    [14] Q. H. Dang, A. Trindade, A.-J. van der Veen, and G. Leus, “Signal model and receiver algorithms for a transmit-reference ultra-wideband communication system,” IEEE J. Select. Areas Commun., vol. 24, pp. 773-779, Apr. 2006.
    [15] Y.-L. Chao, “Optimal integration time for UWB transmitted reference correlation receivers,” in Proc. Asilomar Conf. Signals, Sys., and Computers, Nov. 2004, pp. 647-651.
    [16] T. Q. S. Quek and M. Z. Win, “Analysis of UWB transmitted-reference communication systems in dense multipath channels,” IEEE J. Select. Areas Commun., vol. 23, pp. 1863-1874, Sept. 2005.
    [17] M. Pausini and G. J. M. Janssen, “Performance analysis of UWB autocorrelation receivers over Nakagami-fading channels,” IEEE J. Selected Topics Signal Processing, vol. 1, pp. 443-455, Oct. 2007.
    [18] T. Jia and D. I. Kim, “Analysis of channel-averaged SINR for indoor UWB Rake and transmitted reference systems,” IEEE Trans. Commun., vol. 55, pp. 2022-2032, Oct. 2007.
    [19] Y. Na and M. Saquib, “Analysis of the channel energy capture in ultra-wideband transmitted reference systems,” IEEE Trans. Commun., vol. 55, pp. 262-265, Feb. 2007.
    [20] W.-D. Wu, C.-C. Lee, C.-H. Wang, and C.-C. Chao, “Signal-to-interference-plusnoise
    ratio analysis for direct-sequence ultra-wideband systems in generalized Saleh- Valenzuela channels,” IEEE J. Selected Topics Signal Processing, vol. 1, pp. 483-497, Oct. 2007.
    [21] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Select. Areas Commun., vol. 5, pp. 128-137, Feb. 1987.
    [22] J. Foerster, et al., “Channel modeling sub-committe report _nal,” IEEE doc.: IEEE P802.15-02/490r1-SG3a, Feb. 2003.
    [23] A. F. Molisch, J. R. Foerster, and M. Pendergrass, “Channel models for ultrawide-band personal area networks,” IEEE Wireless Commun., vol. 10, pp. 14-21, Dec. 2003.
    [24] A. F. Molisch, et al., “IEEE 802.15.4a channel model - Final report,” IEEE doc.: IEEE 802.15-04-0662-02-004a, 2005.
    [25] A. F. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win, “A comprehensive standardized model for ultrawideband propagation channels,” IEEE Trans. Antennas Propagat., vol. 54, pp. 3151-3166, Nov. 2006.
    [26] S. M. Ross, Stochastic Processes. New York: Wiley, 1996.
    [27] E. P. C. Kao, An Introduction to Stochastic Processes. Belmont, CA: Duxbury, 1997.
    [28] Y.-L. Chao, “Ultra-wideband radios with transmitted reference methods,” Ph.D. dissertation, Dept. Elec. Eng., Univ. of Southern California, Los Angeles, 2005.
    [29] J.-Y. Chang, W.-D. Wu, and C.-C. Chao, “An analytical framework for ultra-wideband communications over IEEE 802.15.4a channels,” in Proc. IEEE Int. Symp. Inform. Theory, Toronto, Canada, July, 2008, pp. 2757-2761.
    [30] M.A. Nemati and R.A. Scholtz, “A di_usion model for UWB indoor propagation,” in Proc. IEEE Military Commu. Conf., Monterey, CA, Oct. 2004, pp. 140-145.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE