研究生: |
陳嘉祥 Chen, Chia-Hsiang |
---|---|
論文名稱: |
基於雲端運算之即時影音串流轉碼服務平台之研製 Design and Implementation of Cloud-based Real-Time RTMP/RTSP Streaming Transcoder Service Platform |
指導教授: |
黃能富
Huang, Nen-Fu |
口試委員: |
李維聰
陳懷恩 黃能富 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | cloud computing 、transcoder 、rtmp 、rtsp |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
With the progress of network, multimedia applications are widely used in daily life. It is very convenient to use those multimedia applications. However there are still some problems we have to face. One of the problems is that distinct media services deliver media streaming based on different kinds of streaming protocols and codecs. And handheld devices may not support some protocols such as real time message protocol (RTMP) which is not supported by iPhone and iPad. In order to solve this problem, we design and implement a cloud-based real-time RTMP/RTSP streaming transcoder service platform. The system provides the service of changing real-time streaming protocols and codecs. And by utilizing virtual machines in cloud the scale of platform is not constrained by machine size. In addition, we also can control lots of virtual machines dynamically and efficiently. As the request of transcoding service grows up, it is almost impossible to control virtual machines manually. Hence, we design the auto-scaling algorithm to make machine manage machines come true. Besides, it also optimizes the cost of running the transcoder service platform. Thus with the proposed methods, in this thesis, we implement a transcoder service platform to play a role of bridge for heterogeneous media streaming.
隨著網際網路科技的發展,網路上許多多媒體影音應用軟體逐漸廣泛的應用在日常生活當中。使用這些軟體不只促進我們生活的便利同時也讓這些產品融入了我們的生活。但在這之中依然存在一些問題需要我們去解決。由不同家公司開發出來的多媒體伺服器使用的網路串流通訊協議以及影音編碼會不盡相同,而且有些網路串流通訊協議以及影音編碼手持式裝置並不支援。例如iPhone 和iPad 並不支援及時訊息協議(RTMP)。為了解決此類型問題建立起溝通的橋梁,我們設計實現了基於雲端運算之即時影音串流轉碼服務平台。此系統提供了及時影音串流的轉換通訊協議以及轉換影音編碼的服務。而且我們還利用雲端上的虛擬機器來建構我們的服務平台,如此一來系統規模將不會受到機器大小的限制隨時都可以加以擴充。除此之外,我們還可以隨意開關雲端上的大量虛擬機器,在需要的時候開啟,在不需要時就可以關閉減少浪費。隨著轉碼服務的需求增加,龐大的機器數量將不可能經由人工的方式進行操控,於是我們設計了一個自動調整系統規模的演算法。此方法實現了由機器管理機器的目標。除了自動管理之外,此系統還會針對租賃虛擬機器的花費做最佳化處理。透過上面所提到的方法,我們在這篇論文中提出並實現了一個扮演異質多媒體串流溝通橋梁的轉碼服務平台。
[1]Real-Time Messaging Protocol http://www.adobe.com/devnet/rtmp/
[2] Real-Time Streaming Protocol http://tools.ietf.org/html/rfc2326
[3] Windows Media HTTP Streaming Protocol
http://msdn.microsoft.com/en-us/library/cc251059(v=prot.10).aspx
[4] Apple http://www.apple.com/
[5] H.264 AVC http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
[6] Amazon EC2 http://aws.amazon.com/ec2/
[7] Wowza http://www.wowzamedia.com
[8] FFmpeg http://www.ffmpeg.org/
[9] Armbrust, M., Fox, A., Griffith, R. et al. Above the Clouds: A Berkeley View of
Cloud Computing. UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, 2009.
[10] Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing:
state-of-the-art and research challenges. Journal of Internet Services and
Applications,1:7–18.
[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia, A view of cloud computing,!
Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2009.
[12] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599{616, 2009.
[13] Buyya, R., Y. Chee Shin, et al. (2008). Market-Oriented Cloud Computing:
Vision, Hype, and Reality for Delivering IT Services as Computing Utilities.
High Performance Computing and Communications, 2008. HPCC '08. 10th
IEEE International Conference on.
[14] BIRMAN, K. 1993. The process group approach to reliable distributed
computing. Commun. ACM 36, 12 (Dec.), 36–53.
[15] Douglas Thain, Todd Tannenbaum, and Miron Livny.Distributed computing in
practice: The Condor experience. Concurrency and Computation: Practice and
Experience,2004.
[16] I. Foster, “The Grid: A New Infrastructure for 21st Century Science,” Physics
Today, vol. 55, no. 2, 2002, pp. 42-47.
[17] I. Foster, C. Kesselman, J.M. Nick and S. Tuecke. ”Grid Services for Distributed
Systems Integration”, IEEE Computer, 35 (6). 2002.
51
[18] Google App Engine http://code.google.com/intl/zh-TW/appengine/
[19] Yahoo Cloud Computing http://labs.yahoo.com/Cloud_Computing
[20] Microsoft Azure http://www.microsoft.com/windowsazure/
[21] IBM Cloud Computing http://www.ibm.com/cloud-computing/us/en/
[22] Oracle Grid Engine.
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
[23] Chunghwa Telecom http://www.cht.com.tw/
[24] Assuncao, M. D. d., A. d. Costanzo, et al. (2009). Evaluating the cost-benefit of
using cloud computing to extend the capacity of clusters. Proceedings of the 18th
ACM international symposium on High performance distributed computing.
Garching, Germany, ACM: 141-150.
[25] Lee, Y. C., C. Wang, et al. (2010). Profit-Driven Service Request Scheduling in
Clouds. Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on.
[26] Ming, M., L. Jie, et al. (2010). Cloud auto-scaling with deadline and budget
constraints. Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on.
[27] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints for
adaptive applications in cloud environments,” in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing
(HPDC’10), 2010.
[28] Marshall, P., K. Keahey, et al. (2010). Elastic Site: Using Clouds to Elastically
Extend Site Resources. Cluster, Cloud and Grid Computing (CCGrid), 2010
10th IEEE/ACM International Conference on.
[29] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling for
virtualized multi-tier applications in cloud data center,” in Proceedings of the 3rd
International Conference on Cloud Computing (CLOUD’10), 2010.
[30] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling of web
applications in a virtualized cloud computing environment,” in Proceedings of
the 6th International Conference on e-Business Engineering (ICEBE’09), 2009.
[31] L. Rodero-Merino, L. M. Vaquero, V. Gil, F. Gal’an, J. Font’an, R. S. Montero,
and I. M. Llorente, “From infrastructure delivery to service management in
clouds,” Future Generation Computer Systems, vol. 26,no. 8, pp. 1226–1240,
2010.
[32] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma
“Towards autonomic workload provisioning for enterprise grids and clouds,” in
Proceedings of the 10th IEEE/ACM International Conference on Grid
Computing (GRID’09), 2009.
52
[33] Adobe http://www.adobe.com/
[34] Youtube http://www.youtube.com/
[35] Justin-TV http://zh-tw.justin.tv/
[36] VLC http://www.videolan.org/vlc/
[37] Sirannon http://sirannon.atlantis.ugent.be/
[38] A. Rombaut, N. Staelens, N. Vercammen, B. Vermeulen, and P.
Demeester,“xStreamer: Modular Multimedia Streaming,” in Proc. 17th ACM Int.
Conf. Multimedia, 2009, pp. 929–930.
[39] Hyperstream http://www.hyperstreamlive.com/
[40] Panda http://www.pandastream.com/
[41] ShareRoom http://www.netxtream.com