研究生: |
林庭毅 Lin, Ting-I |
---|---|
論文名稱: |
超音波噴塗磷酸/硼酸與圖形化摻雜應用於交指狀背電極太陽能電池 Locally Patterned N+ and P+ Doped Layers for Interdigitated-Back-Contact Solar Cells by Ultrasonic Spray Technique |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
林澤勝
孫文檠 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 太陽能電池 、噴塗 、背電極 、硼酸 、磷酸 、圖形化 |
外文關鍵詞: | solar cell, back-contact, boric acid, phosphoric acid, pattern |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
n型與p型矽摻雜在太陽能電池領域以及IC產業中都有非常重要的應用,在工業中最被廣為應用的摻雜方法為離子佈植以及熱擴散。但這兩種製程方式都必須使用到精密的真空設備,且若要圖形化摻雜均須使用黃光微影而使得成本昂貴,甚至在硼和磷擴散最常所使用的擴散源BBr3、BCl3和POCl3均是具有強烈臭味的有毒物,不僅對操作人員危險,甚至對環境也有害。
本研究以超音波震盪噴塗磷酸和硼酸於矽基板表面製作p型與n行之圖形化摻雜,並應用於交指狀背電極太陽能電池。除了製程無毒、無害之外,以此方式能以簡單的設備在大氣下進行鍍膜,並且不須經過昂貴且繁複的黃光製程即可輕易將定義出的區域做圖形化的摻雜,甚至可在單面基板上同時噴塗出p型和p型的圖案,並只須在空氣中進行單次退火便能直接得到p型與n型的摻雜區域,對於高效率矽晶電池中的交指狀背電極太陽電池(Interdigitated-Back-Contact Solar Cells)有良好的應用性。
另外,本研究在p型和n型摻雜濃度上也可以做到有效的控制,依照硼酸/磷酸的濃度、噴塗時間、硼/磷玻璃厚度和退火溫度即可調整片電阻值。已知道摻雜濃度越高則基板表面片電阻越低,本研究可藉由控制硼或磷的摻雜狀況而逐漸降低片電阻,n型摻雜可由原始片電阻約125Ω/□逐步控制到重摻雜的28Ω/□;p型摻雜則可由原始片電阻約125Ω/□逐步控制到重摻雜的30Ω/□。
Abstract
Phosphoric acid and boric acid were used as low cost, nontoxic n-type and p-type doping sources for silicon solar cells. In this research, we coated dilute phosphoric acid and boric acid on silicon wafer by ultrasonic spray coating method without any additional complicated vacuum system. Furthermore, a designed pattern diffusion area can be obtained by using an easily removed mask. After these two acids spraying on, the n-type and p-type patterned area can be driven-in at just one annealing process in air. The sheet resistance of the n-type and p-type doping area can be controlled by spraying time and annealing temperature. In phosphorus doping, sheet resistance ranging from 28 to 125Ω/□ were achieved. In boron doping, sheet resistance from 30 to 125Ω/□ could be acquired. The n-type and p-type doping fabrication process by low cost ultrasonic spray method can be used for Interdigitated-Back-Contact (IBC) solar cells application.
[1] Sven Kluska n, FilipGranek,MarcR‥ udiger, MartinHermle,StefanW.Glunz, “Modeling and optimization study of industrial n-type high-efficiency back-contact back-junction silicon solar cells”, Solar Energy Materials & Solar Cells 94 (2010) 568–577
[2] Photon International, ITRI/MCL, Taiwan (2010/05)
[3] Filip Granek, “HIGH-EFFICIENCY BACKCONTACT BACK-JUNCTION SILICON SOLAR CELLS”, Fraunhofer ISE, 31 July 2009
[4] D. De Ceuster, P. Cousins, D. Rose, D. Vicente, P. Tipones, and W. Mulligan, “Low Cost, high volume production of >22% efficiency silicon solar cells, in Proceedings of the 22nd European Photovoltaic Solar Energy Conference”, Milan, Italy, 816-9 (2007)
[5] Peter J. Cousins, David D. Smith, Hsin- Chiao Luan, Jane Manning, Tim D. Dennis, Ann Waldhauer, Karen E. Wilson, Gabriel Harley & William P. Mulligan, “GENERATION 3: IMPROVED PERFORMANCE AT LOWER COST”, Sunpower Corporation, 2010 IEEE PVSC, USA
[6] 孫文檠, “從三十五屆IEEE太陽能專家會議看矽晶太陽電池技術發展趨勢”, 材料世界網-材料最前線, 工研院材化所, 2010
[7] IMEC, Solar Cells Technology Group, Advances in OptoElectronics, 2007
[8] http://tw.knowledge.yahoo.com/question/question?qid=1507021607270
[9] http://en.wikipedia.org/wiki/Cavitation
[10] Franc, Jean-Pierre, “Fundamentals of Cavitation.” Dordrect, The Netherlands: Kluwer Academic Publishers, (2004).
[11] A. Nakaruk, C. C. Sorrell, “Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films”, J. Coat. Technol. Res., 7 (5) 665–676, 2010
[12] DAINIUS PEREDNIS & LUDWIG J. GAUCKLER, “Thin Film Deposition Using Spray Pyrolysis”, Journal of Electroceramics, 14, 103–111, 2005
[13] Prof. Shakhashiri, “PHOSPHORIC ACID, H3PO4”, Chemical of the week, General Chemistry, 6 Feb 2008
[14] http://en.wikipedia.org/wiki/Phosphoric_acid
[15] http://www.tophcc.com.tw/news-2.php?news_id=90
[16] A. V. Slack, “Phosphoric Acid”, Vol. 1, Part II, p. 931, Marcel Dekker, Inc., New York ,1968
[17] D. S. Kim, M. M. Hilali, A. Rohatgi, z K. Nakano, A. Hariharan, and K. Matthei, “Development of a Phosphorus Spray Diffusion System for Low-Cost Silicon Solar Cells”, Journal of The Electrochemical Society, 153 , 7, 2006
[18] http://www.chemindustry.com/chemnames/p/Polyphosphoric_acid.html
[19] R.B. Fair, “Concentration Profiles of Diffuse Dopants in Silicon,” in F.Y.Y Yang, Ed. “Impurity Dopant Processes in Silicon,” North Holland (1981).
[20] Scotten W. Jones, “Diffusion in Silicon”, IC Knowledge LLC. April 25, 2008
[21] http://baike.baidu.com/view/62432.htm
[22] A. Das, D. S. Kim, K. Nakayashiki, B. Rounsaville, V. Meemongkolkiat, and A. Rohatgi, “Boron Diffusion with Boric Acid for High Efficiency Silicon Solar Cells”, Journal of The Electrochemical Society, 157 (6) H684-H687 , 2010
[23] D.Y. Kwok, A.W. Neumann, “Contact angle measurement and contact angle interpretation”, Advances in Colloid and Interface Science 81(1999)167-249
[24 ] “ANGLE DE CONTACT”, Biophy, REASEARCH
[25 ] R. N. Wenzel: Ind. Eng. Chem. 28, 988 (1936)
[26] ROBERT N. WENZEL, “SURFACE ROUGHNESS AND CONTACT ANGLE”, Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania, October 25, 1949
[27] Schwartz RJ, Lammert MD. “ Silicon solar cells for high concentration applications.” Proceedings of the IEEE International Electron Devices Meeting, Washington DC, 1975; 350–352
[28] R. Woehl, J. Krause, F. Granek, and D. Biro, “19.7% Efficient All-Screen-Printed Back-Contact Back-Junction Silicon Solar Cell With Aluminum-Alloyed Emitter”, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 3, MARCH 2011
[29] Peter Hacke, James M. Gee, “A screen-printedinterd gitatedback contact cell using a boron-source diffusion barrier”, Solar Energy Materials & Solar Cells 88 (2005) 119–127
[30] MUNAWAR AHMAD, “AN INVESTIGATION OF THE PROPERTIES OF INTERDIGITATED ACK CONTACT SOLAR CELLS”, Sola~ Cells, 25 (1988) 53 – 60
[31] Emmanuel Van Kerschaver and Guy Beaucarne, “Back-contact Solar Cells: A Review”, PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, Prog. Photovolt: Res. Appl. 2006; 14:107–123
[32] D. Diouf, J.P. Kleider, T. Desrues, P.-J. Ribeyron, “Effects of the front surface field in n-type interdigitated back contact silicon heterojunctions solar cells”, Energy Procedia 2 (2010) 59–64
[33] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-chargedielectric Al2O3”, JOURNAL OF APPLIED PHYSICS 104, 113703 (2008)
[34] L. Remachea, E. Fourmond, A. Mahdjoub, J. Dupuis, M. Lemiti, “Design of porous silicon/PECVD SiOx antireflection coatings for silicon solar cells”, Materials Science and Engineering B 176 (2011) 45–48
[35] B. Hoex, J. Schmidt and R. Bock, P. P. Altermatt, M. C. M. van de Sanden and W. M. M. Kessels, “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3”, APPLIED PHYSICS LETTERS 91, 112107 (2007)
[36] “Four Point Probe”, NCKU Micro-Nano Technology Center/Southern Region MEMS Center
[37] Daniel M. Dobkin, “Boron and Phosphorus Diffusion in SiO2 and SiOxNy”
[38] K. Shimakura, T. Suzuki, and Y. Yadoiwa, "Boron and Phosphorus Diffusion through an SiO2 layer from a Doped Polycrystalline Si Source under Various Drive-in Ambients", Solid State Electronics 18 991 (1975)
[39] P. Wilson, "The Diffusion of Boron in the Si-SiO2 System", Solid State Electronics 15 961 (1972)
[40] R. Ghoshtagore, "Silicon Dioxide Masking of Phosphorus Diffusion in Silicon", Solid State Electronics 18 399 (1975)
[41] R. Ghoshtagore, "Phosphorus Diffusion Processes inSiO2 Films" Thin Solid Films 25 501 (1975)
[42] 陳瑋, “Fabrication and Characteristics of Solar Cell Back Side Passivation by Ultrasonic Spray Pyrolysis;超音波噴霧熱解法製備太陽能電池背部鈍化層”, 國立清華大學, 工程與系統科學系, 碩士論文,July, 2009
[43] D. Bouhafs, A. Moussi, M. Boumaour, S.E.K. Abaidia, L. Mahiou, “N+ silicon solar cells emitters realized using phosphoric acid as doping source in a spray process”, Thin Solid Films 510 (2006) 325–328
[44] Monsanto Technical Bulletin No. P-26 (204), “innophos-phosphoric-acid-table-10”
[45] Catherine Voyer, Daniel Biro, Kai Wagner, Jan Benick, Ralf Preu. Jorg Koriath, Moritze, Harald N. Wanka, “PROGESS IN THE USE OF SPRAYED PHOSPHORIC ACID AS AN INEXPENSIVE DOPANT SOURCE FOR INDUSTRIAL SOLAR CELLS”, 20th European Photovoltaic Solar Energy Conference and Exhibition, 6-10. June 2005, Barcelona.
[46] Hsin-Chiao Fang,a Che-Chia Chang, Chuan-Pu Liu, Hung-Shuo Chung, and Chin-Lin Huang, “Effects of Back Surface Textures on Contact Formation and Solar Cell Performanc”, Journal of The Electrochemical Society, 157 (3) H246-H249 (2010)