簡易檢索 / 詳目顯示

研究生: 周華展
Chou, Hua-Jan
論文名稱: 以耗散粒子動力學模擬奈米顆粒與雙嵌段共聚物複合材料於剪切流場下之形態轉換研究
Dissipative Particle Dynamics Simulation on the Shear-Induced Morphology Transitions of Nanoparticles within Diblock Copolymers Composites
指導教授: 張榮語
Chang, Rong-Yu
口試委員: 許嘉翔
曾煥錩
王鎮杰
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 54
中文關鍵詞: 耗散粒子動力學共聚物奈米複合材料自組裝形態結構剪切稀化
外文關鍵詞: Dissipative particle dynamics, Copolymer Nanocomposites, Self-Assembly, Morphology, Shear Thinning
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係利用耗散粒子動力學模擬,進行研究奈米顆粒於雙嵌段共聚物複合材料中,顆粒之體積分率與親和性對雙嵌段共聚物隨流場之形態轉換與黏度所造成的效應。研究使用親A嵌段共聚物奈米顆粒與無親性奈米顆粒兩種系統,分別在奈米顆粒體積分率為5%、10%、20%、30%、40%,且不同剪切速率下觀察與統計其高分子形態與黏度之數據。研究結果有二個方向。
    一、形態結構
    在高分子結構上,親A高分子奈米顆粒系統擁有比較多的形態結構,因為加入親A性奈米顆粒相當於增加A domain的效應,其顆粒會幫助雙嵌段共聚物自組裝結構進行有序-有序相轉換。而無親性奈米顆粒則不會產生有序相轉換的現象,但其顆粒會聚集在高分子層板界面之間降低高分子界面張力而使剪切稀化現象提早發生,又當顆粒濃度高至40%時,顆粒會呈現單層板狀結構橫斷高分子層板。
    二、黏度數據
    親A性奈米顆粒系統在高濃度下(≥30%)會是六角柱狀結構,其結構不會有剪切稀化現象發生,黏度較穩定不隨流場大小改變而改變,因此可以控制顆粒濃度而決定是否要有剪切稀化的發生。無親性奈米顆粒系統則會因為高分子界面張力降低,而提早發生剪切稀化的現象,且黏度相較於親A性系統都較低,又當奈米顆粒呈現單層板狀時會擁有此次研究最低的黏度。


    In this thesis, the impact of the volume fraction and affinity of nanoparticles that are in diblock copolymer composites, on the morphology transition and viscosity of diblock copolymers is investigated via the experiments done by dissipative particle dynamics simulation. The morphology and viscosity of A-affinity system and non-affinity system are analyzed under various condition combinations of the nanoparticle volume fraction and shear rate of those simulation systems.
    1. For the morphology
    The A-affinity system shows more structure types than the non-affinity on copolymer morphology. Because with the appearance of A-affinity nanoparticle, the effect of A domain can increase to activate the order-order transition of the diblock copolymer morphology, While non-affinity nanoparticle cannot activate the order-order transition. Nevertheless, the particles of non-affinity nanoparticle will congregate in copolymer lamellar to reduce interfacial tension of copolymer lamellar to stimulate the phenomenon of shear thinning. Besides, when the non-affinity particle concentration increases to 40%, a single-lamellar structure is formed by the particles to cut off the copolymer lamellar.
    2. For the viscosity
    A-affinity system is formed as hexagonal cylinder structure when the concentration is larger than 30%. The viscosity is stable and not changed as shear flow varying. Therefore, the occurrence of shear thinning can be controlled by varying the concentration of particles. On the other hand, in non-affinity system, the phenomenon of shear thinning can occur earlier due to decreased interfacial tension of copolymer. Because of decreased interfacial tension of copolymer, the viscosity is lower than in A-affinity system. The lowest viscosity is observed in this study when the nanoparticles are formed as a single-lamellar structure.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 奈米複合材料 2 1.4 耗散粒子動力學簡介 3 第二章 文獻回顧 5 2.1 耗散粒子動力學模擬文獻回顧 5 2.2 耗散粒子動力學模擬於剪切流場下之文獻回顧 8 2.3 雙嵌段共聚物與奈米顆粒共混之文獻回顧 10 第三章 研究方法 16 3.1 耗散粒子動力學基本理論架構 16 3.1.1 耗散粒子動力學作用力場 17 3.1.2 運動方程式的數值積分法 19 3.1.3 週期性邊界與最小鏡像法 20 3.1.4 耗散粒子動力學基本假設與模擬流程 22 3.2 非平衡耗散粒子動力學模擬方法 24 3.2.1 SLLOD演算法 25 3.2.2 Lees-Edwards週期性邊界與最小鏡像法 26 第四章 模擬系統驗證 28 4.1 對稱雙嵌段共聚高分子系統驗證 29 4.1.1 耗散粒子動力學單顆粒子未接鏈驗證 29 4.1.2 耗散粒子動力學接鏈系統驗證 30 4.2 具剪切流場之雙嵌段共聚物系統驗證 33 第五章 結果與討論 35 5.1 雙嵌段共聚物/奈米顆粒系統於剪切流場下之系統介紹 35 5.2 雙嵌段共聚物/奈米顆粒系統於剪切流場下之形態討論 38 5.2.1 親A性奈米顆粒系統 41 5.2.2 無親性奈米顆粒系統 38 5.3 雙嵌段共聚物/奈米顆粒系統於剪切流場下之黏度計算 44 5.3.1 親A性奈米顆粒系統 46 5.3.2 無親性奈米顆粒系統 45 5.3.3 親A性與無親性奈米顆粒系統黏度比較 47 第六章 結論與未來展望 48 參考文獻 51

    1. Wang, Y. and N. Herron, X-ray photoconductive nanocomposites. Science, 1996. 273(5275): p. 632-634.
    2. Buxton, G.A. and A.C. Balazs, Lattice spring model of filled polymers and nanocomposites. Journal of Chemical Physics, 2002. 117(16): p. 7649-7658.
    3. Huynh, W.U., J.J. Dittmer, and A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science, 2002. 295(5564): p. 2425-2427.
    4. Greene, L.E., et al., ZnO-TiO2 core-shell nanorod/P3HT solar cells. Journal of Physical Chemistry C, 2007. 111(50): p. 18451-18456.
    5. 葉瑞銘 and 翁暢健, 有機無機混成奈米複合材料. THE CHINESE CHEMISTRY, 2004. 62(4): p. 473-482.
    6. Si, M., et al., Compatibilizing bulk polymer blends by using organoclays. Macromolecules, 2006. 39(14): p. 4793-4801.
    7. Paul, D.R. and L.M. Robeson, Polymer nanotechnology: Nanocomposites. Polymer, 2008. 49(15): p. 3187-3204.
    8. Wang, S.R., et al., Dispersion and thermal conductivity of carbon nanotube composites. Carbon, 2009. 47(1): p. 53-57.
    9. de Luzuriaga, A.R., H.J. Grande, and J.A. Pomposo, Phase diagrams in compressible weakly interacting all-polymer nanocomposites. Journal of Chemical Physics, 2009. 130(8).
    10. Jancar, J., et al., Current issues in research on structure-property relationships in polymer nanocomposites. Polymer, 2010. 51(15): p. 3321-3343.
    11. Peng, G.W., et al., Forming supramolecular networks from nanoscale rods in binary, phase-separating mixtures. Science, 2000. 288(5472): p. 1802-1804.
    12. Lin, Y., et al., Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature, 2005. 434(7029): p. 55-59.
    13. Lo, C.T., et al., Effect of molecular properties of block copolymers and nanoparticles on the morphology of self-assembled bulk nanocomposites. Macromolecules, 2007. 40(23): p. 8302-8310.
    14. Kim, B.J., G.H. Fredrickson, and E.J. Kramer, Effect of polymer ligand molecular weight on polymer-coated nanoparticle location in block copolymers. Macromolecules, 2008. 41(2): p. 436-447.
    15. Liu, W., et al., Dissipative particle dynamics study on the morphology changes of diblock copolymer lamellar microdomains due to steady shear. Physical Review E, 2006. 74(2).
    16. Koppi, K.A., et al., Lamellae Orientation in Dynamically Sheared Diblock Copolymer Melts. Journal De Physique Ii, 1992. 2(11): p. 1941-1959.
    17. Guo, H.X., Shear-induced parallel-to-perpendicular orientation transition in the amphiphilic lamellar phase: A nonequilibrium molecular-dynamics simulation study. Journal of Chemical Physics, 2006. 124(5).
    18. 馬振基, 高分子複合材料,上冊. 國立編譯館, 1995.
    19. 蔡信行 and 孫光中, 奈米科技導論-基本原理及應用 (第二版). 新文京開發出版股份有限公司, 2009.
    20. Alder, B.J. and T.E. Wainwright, Phase Transition for a Hard Sphere System. Journal of Chemical Physics, 1957. 27(5): p. 1208-1209.
    21. Chang, S.H. and H.S. Kim, Investigation of hygroscopic properties in electronic packages using molecular dynamics simulation. Polymer, 2011. 52(15): p. 3437-3442.
    22. Kirkensgaard, J.J.K., Systematic progressions of core-shell polygon containing tiling patterns in melts of 2nd generation dendritic miktoarm star copolymers. Soft Matter, 2011. 7(22): p. 10756-10762.
    23. He, L.L., et al., Self-assembly of cyclic rod-coil diblock copolymers. Journal of Chemical Physics, 2013. 138(9).
    24. Xiao, M.Y., et al., Controlling the self-assembly pathways of amphiphilic block copolymers into vesicles. Soft Matter, 2012. 8(30): p. 7865-7874.
    25. Yiannourakou, M., et al., Rheological behavior of aqueous polyacrylamide solutions determined by dissipative particle dynamics and comparison to experiments. Epl, 2012. 97(3).
    26. Li, Z.L. and E.E. Dormidontova, Kinetics of Diblock Copolymer Micellization by Dissipative Particle Dynamics. Macromolecules, 2010. 43(7): p. 3521-3531.
    27. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
    28. Koelman, J.M.V.A. and P.J. Hoogerbrugge, Dynamic Simulations of Hard-Sphere Suspensions under Steady Shear. Europhysics Letters, 1993. 21(3): p. 363-368.
    29. Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
    30. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
    31. Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
    32. Martinez-Veracoechea, F.J. and F.A. Escobedo, Simulation of the gyroid phase in off-lattice models of pure diblock copolymer melts. Journal of Chemical Physics, 2006. 125(10).
    33. Lisal, M. and J.K. Brennan, Alignment of lamellar diblock copolymer phases under shear: Insight from dissipative particle dynamics simulations. Langmuir, 2007. 23(9): p. 4809-4818.
    34. Liu, D. and C. Zhong, Cooperative Self-Assembly of Nanoparticle Mixtures in Lamellar Diblock Copolymers: A Dissipative Particle Dynamics Study. Macromolecular Rapid Communications, 2006. 27(6): p. 458-462.
    35. Chen, H.Y. and E. Ruckenstein, Nanoparticle aggregation in the presence of a block copolymer. Journal of Chemical Physics, 2009. 131(24).
    36. Chen, H.Y. and E. Ruckenstein, Structure and particle aggregation in block copolymer-binary nanoparticle composites. Polymer, 2010. 51(24): p. 5869-5882.
    37. Kalra, V., et al., Coarse-grained molecular dynamics simulation on the placement of nanoparticles within symmetric diblock copolymers under shear flow. Journal of Chemical Physics, 2008. 128(16).
    38. 邱佑宗, 耗散粒子動力計算方法簡介及應用. 工業材料雜誌 213 期, 2004.
    39. Prigogin.I, F. Henin, and C. George, Dissipative Processes Quantum States and Entropy. Proceedings of the National Academy of Sciences of the United States of America, 1968. 59(1): p. 7-&.
    40. Hoover, W.G., et al., Lennard-Jones Triple-Point Bulk and Shear Viscosities - Green-Kubo Theory, Hamiltonian-Mechanics, and Non-Equilibrium Molecular-Dynamics. Physical Review A, 1980. 22(4): p. 1690-1697.
    41. Evans, D.J. and G.P. Morriss, Nonlinear-Response Theory for Steady Planar Couette-Flow. Physical Review A, 1984. 30(3): p. 1528-1530.
    42. Lees, A.W. and S.F. Edwards, The computer study of transport processes under extreme conditions. Journal of Physics C: Solid State Physics, 1972. 5(15): p. 1921.
    43. Moore, J.D., et al., Transient rheology of a polyethylene melt under shear. Physical Review E, 1999. 60(6): p. 6956-6959.
    44. 李浩旻, 以耗散粒子動力學模擬高分子在剪切流動下對形態變化之影響. 國立清華大學化學工程研究所碩士學位論文, 2011.
    45. 羅予祥, 耗散粒子動力學模擬奈米棒狀顆粒與雙嵌段共聚物共混於剪切流場下之相態變化. 國立清華大學化學工程研究所碩士學位論文, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE