簡易檢索 / 詳目顯示

研究生: 方裕勝
Fang, Yu-Sheng.
論文名稱: 蛋白質TDP-43寡聚體及其結構專一性抗體在生化和磷酸化的研究
The biochemical and phosphorylation studies of TDP-43 oligomers and its conformational antibody
指導教授: 陳韻如
Chen, Yun-Ru
蘇士哲
Sue, Shih-Che
口試委員: 袁小琀
Yuan, Hanna S.
黃聖言
Hwang, DennisW
黃介嶸
Huang, Jie-rong
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 87
中文關鍵詞: 神經退化性疾病
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從TDP-43被發現存在於腦前側額顳葉退化症(FTLD)和漸凍人症(ALS)的神經細胞沉澱物中,這個蛋白就開始被許多人研究。TDP-43由414個胺基酸所組成其中有兩個RNA recognition motifs (RRMs) 以及高度無序的 GQN-rich 在蛋白質的C端。大部分正常的TDP-43存在於細胞核中,負責基因調控的功能。到目前為止我們對TDP-43造成疾病的機制並不清楚,但病人的細胞中所找到的沉澱物,許多是ubiquitination,超磷酸化以及 N端缺失的蛋白質片段。目前研究能在爭論到底造成疾病的關鍵是因為TDP-43失去原有的功能史的細胞功能異常,抑或是不正常的TDP-43形成具有毒性的特殊物質使的細胞不正常?
    為了要更了解TDP-43,我們用重組蛋白的方式在大腸桿菌中產生並純化該蛋白。研究中我們發現TDP-43會形成一種特別的寡聚體,並且會被辨認類澱粉蛋白的寡聚體的抗體所辨認。此外,我們還發現TDP-43寡聚體會誘導乙型類澱粉蛋白形成寡聚體並抑制其纖維化的產生。另外,我們還製造了專門辨認TDP-43寡聚體的抗體,此抗體也辨認到在人類及老鼠的神經細胞中的沉澱物,我們還利用此抗體把組織中的TDP-43寡聚體純化出來並用電子顯微鏡觀察其形態。再者,TDP-43的磷酸化研究中我們發現C端的磷酸化會提高TDP-43的水溶性,但是其液態的相分離現象會降低。另外,我們還發現磷酸化的TDP-43會形成類澱粉纖維。
    總而言之,我們的研究發現TDP-43寡聚體的存在,並且磷酸化可能會導致類澱粉纖維的產生,提供了一個觀點去了解TDP-43跟類澱粉的致病機制有關,並期望之後的研究可以發展出診斷或是治療此疾病的方法。


    TAR DNA-binding protein-43, TDP-43, discovered in the two neurodegenerative diseases, frontal temporal lobar dementia (FTLD) and amyotrophic lateral sclerosis (ALS), is an important disease protein to be studied. TDP-43 contains 414 residues with two RNA recognition motifs (RRMs) and a highly disordered GQN-rich region in C-terminus. TDP-43 is mainly located in the nucleus and involved in gene regulation. The pathogenic mechanism of TDP-43 in the diseases is not clear. In the diseases TDP-43 inclusions were characterized with ubiquitination, hyper-phosphorylation and N-terminal truncation. Whether loss of normal function or gain of toxic function contributes to the pathogenic mechanism is still under debate.
    To study the mechanisms of TDP-43 in diseases, we generated recombinant human TDP-43 from E. coil. Size exclusion chromatography showed TDP-43 formed large-molecular-weight aggregates. Dynamic light scattering and transmission electron microscopy showed most of the particle populated at ~50 nm in diameter. Interestingly, TDP-43 was able to be recognized by specific anti-amyloid oligomer antibody. It is suggested that TDP-43 oligomers and amyloid oligomers have some similar epitopes. Besides, TDP43 oligomers induced synthetic Aβ40 to oligomer by inhibiting the amyloid fibril formation. We further generated polyclonal and monoclonal TDP-43 oligomer specific antibodies, TDP-O. Immunocytochemistry and immunohistochemistry showed polyclonal TDP-O antibody can stain inclusions in FTLD patient’s brain. Immunoprecipitation pulled down the TDP-43 oligomers from the extract of FTLD patient’s brain. In C-terminal phosphorylated TDP-43 study, we found C-terminal phosphorylation can increase its solubility. Furthermore, C-terminal serine phosphorylation of TDP-43 forms ThT positive amyloid fibril. In conclusion, our studies demonstrate that the full-length TDP-43 formed structurally stable amyloid-like oligomers and C-terminal phosphorylation leads to form amyloid fibril. Besides, our results supposed a possible mechanism for TDP-43 protienopathies which may be related to amyloidosis.

    Chapter 1 Introduction 1 1.1. Neurodegenerative diseases 1 1.1.1. Frontotemporal lobar degeneration 1 1.1.2. Amyotrophic lateral sclerosis 2 1.2. TDP-43 pathology 4 1.3. The structure of TDP-43 5 1.4. Amyloid and amyloidsis 6 1.5. TDP-43 is not a classic amyloid protein 7 1.6. Conformational specific antibody 8 1.7. Liquid-liquid phase separation 9 1.8. Hyper-phosphorylation in TDP-43 9 Chapter 2 Materials and Methods 11 2.1. Materials 11 2.2. Methods 13 2.2.1. Cloning 13 2.2.2. Protein expression 14 2.2.3. Protein purification (soluble) 14 2.2.4. Protein purification (insoluble) 15 2.2.5. Protein refolding 16 2.2.6. TDP-43 quantification 16 2.2.7. TDP-43 protein dialysis 18 2.2.8. Far-UV circular dichroism spectroscopy 18 2.2.9. Fluorescence spectroscopy 18 2.2.10. Dynamic Light Scatterling 19 2.2.11. Size exclusion chromatography 19 2.2.12. Denaturing assay 19 2.2.13. Aβ aggregation and cross-seeding assay 20 2.2.14. Transmission Electron Microscopy (TEM) 20 2.2.15. Immuno gold staining 20 2.2.16. Antibody production 21 2.2.17. Antibody purification 22 2.2.18. Indirect ELISA for TDP-43 22 2.2.19. Oligomers and monomers preparation 23 2.2.20. Competitive ELISA 23 2.2.21. Brain fractioning and immunoprecipitation 24 2.2.22. Liquid-liquid phase separation (LLPS) 25 2.2.23. TDP-43 aggregation 25 2.2.24. TDP-43 phosphorylation 26 2.2.25. Liposome leakage assay 26 Chapter 3 Characterization of TDP-43 oligomer 28 3.1. Soluble TDP-43 forms high-molecular-weight aggregates 28 3.2. TDP-43 oligomer can be recognized by anti-amyloid oligomer antibody 29 3.3. TDP-43 oligomer showed spherical shape 31 3.4. Secondary structure, hydrophobicity analysis and DNA bindind assay of TDP-43 oligomers 32 3.5. TDP-43 can induce Aβ40 oligomer formation by cross-seeding effect 36 Chapter 4 Anti-TDP-43 oligomer antibody 39 4.1. Generating anti-TDP-43 oligomer antibody, TDP-O 39 4.2. Characterization of polyclonal TDP-O antibody 39 4.3. TDP-43 oligomer in neurodegenerative disease 40 4.4. Monoclonal antibody TDP-O 47 4.5. Competitive ELISA 49 Chapter 5 C-terminal phosphorylation of TDP-43 51 5.1. Generating TDP-43 C-terminal phosphorylation mimicking mutants 51 5.2. Formation of WT, S5D, and S5A oligomers 52 5.3. Spectra characterization of TDP-43 variants 55 5.4. LLPS of TDP-43 variants 56 5.5. ThT assay of TDP-43 variants 59 5.6. Liposome leakage by TDP-43 variants 62 Chapter 6 Comparison of soluble and refolded TDP-43 64 6.1. Absorbance spectra 64 6.2. Circular dichroism 65 6.3. Bis-ANS spectra 66 Chapter 7 Disscussion 68 7.1. TDP-43 is not a classic amyloid 68 7.2. TDP-43 oligomer 69 7.3. The development of TDP-O antibody 70 7.4. TDP-43 liquid-liquid phase separation (LLPS) 70 7.5. C-terminal phosphorylation in TDP-43 71 7.6. The interaction with TDP-43 and lipid 73 7.7. Comparison of TDP-43 from refolded and soluble methods 74 References 75 Appendix 85

    1. Dobson CM. Protein folding and misfolding. Nature 2003;426(6968):884-90.
    2. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM and others. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130-3.
    3. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y and others. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006;351(3):602-11.
    4. Pick A. Ueber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager med Wschr 1892;17:165-167.
    5. Alzheimer A. Über eigenartige Krankheitsfälle des späteren Alters. Z ges Neurol Psychiat 1911;4:256-385.
    6. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M and others. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546-54.
    7. Forman MS, Farmer J, Johnson JK, Clark CM, Arnold SE, Coslett HB, Chatterjee A, Hurtig HI, Karlawish JH, Rosen HJ and others. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 2006;59(6):952-62.
    8. Mackenzie IRA, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, Holm IE and others. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta neuropathologica 2009;117(1):15-18.
    9. Cairns NJ, Neumann M, Bigio EH, Holm IE, Troost D, Hatanpaa KJ, Foong C, White CL, 3rd, Schneider JA, Kretzschmar HA and others. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 2007;171(1):227-40.
    10. Davidson Y, Kelley T, Mackenzie IR, Pickering-Brown S, Du Plessis D, Neary D, Snowden JS, Mann DM. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 2007;113(5):521-33.
    11. Mackenzie IRA, Neumann M, Baborie A, Sampathu DM, Plessis DD, Jaros E, Perry RH, Trojanowski JQ, Mann DMA, Lee VMY. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathologica 2011;122(1):111-113.
    12. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med 2001;344(22):1688-700.
    13. Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surgical Neurology International 2015;6:171.
    14. Goetz CG. Amyotrophic lateral sclerosis: early contributions of Jean-Martin Charcot. Muscle Nerve 2000;23(3):336-43.
    15. Mackenzie IRA, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. The Lancet Neurology 2010;9(10):995-1007.
    16. Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 2002;59(7):1077-9.
    17. Mackenzie Ian RA, Bigio Eileen H, Ince Paul G, Geser F, Neumann M, Cairns Nigel J, Kwong Linda K, Forman Mark S, Ravits J, Stewart H and others. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Annals of Neurology 2007;61(5):427-434.
    18. Kwong LK, Neumann M, Sampathu DM, Lee VM, Trojanowski JQ. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol 2007;114(1):63-70.
    19. Neumann M, Mackenzie IR, Cairns NJ, Boyer PJ, Markesbery WR, Smith CD, Taylor JP, Kretzschmar HA, Kimonis VE, Forman MS. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 2007;66(2):152-7.
    20. Tan CF, Eguchi H, Tagawa A, Onodera O, Iwasaki T, Tsujino A, Nishizawa M, Kakita A, Takahashi H. TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 2007;113(5):535-42.
    21. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P and others. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009;323(5918):1208-1211.
    22. Kwiatkowski TJ, Jr., Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T and others. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009;323(5918):1205-8.
    23. Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O, Uchikado H, Furukawa Y and others. Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies. Brain Res 2007;1184:284-94.
    24. Uryu K, Nakashima-Yasuda H, Forman MS, Kwong LK, Clark CM, Grossman M, Miller BL, Kretzschmar HA, Lee VM, Trojanowski JQ and others. Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 2008;67(6):555-64.
    25. Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, Liesinger AM, Petersen RC, Parisi JE, Dickson DW. Updated TDP-43 in Alzheimer's disease staging scheme. Acta Neuropathol 2016;131(4):571-85.
    26. Freeman SH, Spires-Jones T, Hyman BT, Growdon JH, Frosch MP. TAR-DNA binding protein 43 in Pick disease. J Neuropathol Exp Neurol 2008;67(1):62-7.
    27. Wider C, Dickson DW, Stoessl AJ, Tsuboi Y, Chapon F, Gutmann L, Lechevalier B, Calne DB, Personett DA, Hulihan M and others. Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism Relat Disord 2009;15(4):281-6.
    28. Nag S, Yu L, Capuano AW, Wilson RS, Leurgans SE, Bennett DA, Schneider JA. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann Neurol 2015;77(6):942-52.
    29. McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG, Attems J. TDP-43 pathology in Alzheimer's disease, dementia with Lewy bodies and ageing. Brain Pathol 2017;27(4):472-479.
    30. Aoki N, Murray ME, Ogaki K, Fujioka S, Rutherford NJ, Rademakers R, Ross OA, Dickson DW. Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathol 2015;129(1):53-64.
    31. Hasegawa M, Arai T, Akiyama H, Nonaka T, Mori H, Hashimoto T, Yamazaki M, Oyanagi K. TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 2007;130(Pt 5):1386-94.
    32. Geser F, Winton MJ, Kwong LK, Xu Y, Xie SX, Igaz LM, Garruto RM, Perl DP, Galasko D, Lee VM and others. Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 2008;115(1):133-45.
    33. Kouri N, Oshima K, Takahashi M, Murray ME, Ahmed Z, Parisi JE, Yen SH, Dickson DW. Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD. Acta Neuropathol 2013;125(5):741-52.
    34. Tartaglia MC, Sidhu M, Laluz V, Racine C, Rabinovici GD, Creighton K, Karydas A, Rademakers R, Huang EJ, Miller BL and others. Sporadic corticobasal syndrome due to FTLD-TDP. Acta Neuropathologica 2010;119(3):365-374.
    35. Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, Xu YF, Stewart H, Kelley BJ, Kuntz K, Crook RJ and others. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 2008;4(9):e1000193.
    36. Chang CK, Huang TH. Untangling the structure of the TDP-43 N-terminal domain. Febs j 2016.
    37. Mompean M, Romano V, Pantoja-Uceda D, Stuani C, Baralle FE, Buratti E, Laurents DV. The TDP-43 N-terminal domain structure at high resolution. FEBS J 2016.
    38. Chang CK, Wu TH, Wu CY, Chiang MH, Toh EK, Hsu YC, Lin KF, Liao YH, Huang TH, Huang JJ. The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity. Biochem Biophys Res Commun 2012;425(2):219-24.
    39. Romano V, Quadri Z, Baralle FE, Buratti E. The structural integrity of TDP-43 N-terminus is required for efficient aggregate entrapment and consequent loss of protein function. Prion 2015;9(1):1-9.
    40. Kuo PH, Doudeva LG, Wang YT, Shen CK, Yuan HS. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 2009;37(6):1799-808.
    41. Wang IF, Wu LS, Shen CK. TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 2008;14(11):479-85.
    42. Johnson BS, McCaffery JM, Lindquist S, Gitler AD. A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2008;105(17):6439-44.
    43. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 2009;284(30):20329-39.
    44. Zhang YJ, Xu YF, Cook C, Gendron TF, Roettges P, Link CD, Lin WL, Tong J, Castanedes-Casey M, Ash P and others. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2009;106(18):7607-12.
    45. Liachko NF, Guthrie CR, Kraemer BC. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci;30(48):16208-19.
    46. Li Y, Ray P, Rao EJ, Shi C, Guo W, Chen X, Woodruff EA, 3rd, Fushimi K, Wu JY. A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A;107(7):3169-74.
    47. Tatom JB, Wang DB, Dayton RD, Skalli O, Hutton ML, Dickson DW, Klein RL. Mimicking aspects of frontotemporal lobar degeneration and Lou Gehrig's disease in rats via TDP-43 overexpression. Mol Ther 2009;17(4):607-13.
    48. Tsai KJ, Yang CH, Fang YH, Cho KH, Chien WL, Wang WT, Wu TW, Lin CP, Fu WM, Shen CK. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med;207(8):1661-73.
    49. Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de Groote C, Van Broeckhoven C, Kumar-Singh S. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A;107(8):3858-63.
    50. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 2009;106(44):18809-14.
    51. TDP-43 Models Coverage. J Alzheimers Dis;21(4):1403-8.
    52. Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med 1997;337(13):898-909.
    53. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 1997;273(3):729-39.
    54. Tycko R, Wickner RB. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res 2013;46(7):1487-96.
    55. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S and others. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442(7105):916-9.
    56. Saini A, Chauhan VS. Delineation of the core aggregation sequences of TDP-43 C-terminal fragment. Chembiochem 2011;12(16):2495-501.
    57. Chen AK, Lin RY, Hsieh EZ, Tu PH, Chen RP, Liao TY, Chen W, Wang CH, Huang JJ. Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J Am Chem Soc 2010;132(4):1186-7.
    58. Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle F, Morita M and others. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 2008;64(1):60-70.
    59. Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muoz MJ, Jackson GR, Kayed R. Preparation and characterization of neurotoxic tau oligomers. Biochemistry;49(47):10039-41.
    60. Kim HY, Cho MK, Kumar A, Maier E, Siebenhaar C, Becker S, Fernandez CO, Lashuel HA, Benz R, Lange A and others. Structural properties of pore-forming oligomers of alpha-synuclein. J Am Chem Soc 2009;131(47):17482-9.
    61. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H and others. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 2013;4(1):124-34.
    62. Smethurst P, Newcombe J, Troakes C, Simone R, Chen YR, Patani R, Sidle K. In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis 2016;96:236-247.
    63. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell;144(1):67-78.
    64. Perchiacca JM, Ladiwala AR, Bhattacharya M, Tessier PM. Structure-based design of conformation- and sequence-specific antibodies against amyloid beta. Proc Natl Acad Sci U S A 2012;109(1):84-9.
    65. Murakami K, Tokuda M, Suzuki T, Irie Y, Hanaki M, Izuo N, Monobe Y, Akagi K, Ishii R, Tatebe H and others. Monoclonal antibody with conformational specificity for a toxic conformer of amyloid beta42 and its application toward the Alzheimer's disease diagnosis. Sci Rep 2016;6:29038.
    66. Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL and others. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2007;2:18.
    67. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300(5618):486-9.
    68. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 2015;163(1):123-33.
    69. Murray DT, Kato M, Lin Y, Thurber KR, Hung I, McKnight SL, Tycko R. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains. Cell 2017;171(3):615-627.e16.
    70. Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR, Myong S, Brangwynne CP. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A 2015;112(23):7189-94.
    71. Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G and others. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012;149(4):768-79.
    72. Burke KA, Janke AM, Rhine CL, Fawzi NL. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. Mol Cell 2015;60(2):231-41.
    73. Conicella AE, Zerze GH, Mittal J, Fawzi NL. ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 2016.
    74. Li HR, Chen TC, Hsiao CL, Shi L, Chou CY, Huang JR. The physical forces mediating self-association and phase-separation in the C-terminal domain of TDP-43. Biochim Biophys Acta 2018;1866(2):214-223.
    75. Goedert M. NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 2015;349(6248):1255555.
    76. Lee W-CM, Yoshihara M, Littleton JT. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America 2004;101(9):3224-3229.
    77. Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA. Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med 2005;11(4):164-9.
    78. Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein Tau: A promising therapeutic target for alzheimer disease. Current medicinal chemistry 2008;15(23):2321-2328.
    79. Kametani F, Nonaka T, Suzuki T, Arai T, Dohmae N, Akiyama H, Hasegawa M. Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun 2009;382(2):405-9.
    80. Inukai Y, Nonaka T, Arai T, Yoshida M, Hashizume Y, Beach TG, Buratti E, Baralle FE, Akiyama H, Hisanaga S and others. Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 2008;582(19):2899-904.
    81. Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y, Forman M, Troost D, Kretzschmar HA, Trojanowski JQ and others. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta neuropathologica 2009;117(2):137-149.
    82. Carlomagno Y, Zhang Y, Davis M, Lin WL, Cook C, Dunmore J, Tay W, Menkosky K, Cao X, Petrucelli L and others. Casein kinase II induced polymerization of soluble TDP-43 into filaments is inhibited by heat shock proteins. PLoS One 2014;9(3):e90452.
    83. Choksi DK, Roy B, Chatterjee S, Yusuff T, Bakhoum MF, Sengupta U, Ambegaokar S, Kayed R, Jackson GR. TDP-43 Phosphorylation by casein kinase Iepsilon promotes oligomerization and enhances toxicity in vivo. Hum Mol Genet 2014;23(4):1025-35.
    84. Liachko NF, McMillan PJ, Strovas TJ, Loomis E, Greenup L, Murrell JR, Ghetti B, Raskind MA, Montine TJ, Bird TD and others. The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43. PLoS Genet 2014;10(12):e1004803.
    85. Liachko NF, Guthrie CR, Kraemer BC. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 2010;30(48):16208-19.
    86. Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 2013;74(1):39-52.
    87. Arai T, Mackenzie IR, Hasegawa M, Nonoka T, Niizato K, Tsuchiya K, Iritani S, Onaya M, Akiyama H. Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol 2009;117(2):125-36.
    88. Nonaka T, Suzuki G, Tanaka Y, Kametani F, Hirai S, Okado H, Miyashita T, Saitoe M, Akiyama H, Masai H and others. Phosphorylation of TAR DNA-binding protein of 43 kDa (TDP-43) by truncated casein kinase 1delta triggers mislocalization and accumulation of TDP-43. J Biol Chem 2016;291(11):5473-83.
    89. Li HY, Yeh PA, Chiu HC, Tang CY, Tu BP. Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS One 2011;6(8):e23075.
    90. Lashuel HA, Lansbury PT, Jr. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 2006;39(2):167-201.
    91. Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 2007;1768(8):1966-75.
    92. Engelhard M, Evans PA. Kinetics of interaction of partially folded proteins with a hydrophobic dye: evidence that molten globule character is maximal in early folding intermediates. Protein Science : A Publication of the Protein Society 1995;4(8):1553-1562.
    93. Lin WL, Dickson DW. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol 2008;116(2):205-13.
    94. Wang YT, Kuo PH, Chiang CH, Liang JR, Chen YR, Wang S, Shen JC, Yuan HS. The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J Biol Chem 2013;288(13):9049-57.
    95. Guenther EL, Cao Q, Trinh H, Lu J, Sawaya MR, Cascio D, Boyer DR, Rodriguez JA, Hughes MP, Eisenberg DS. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat Struct Mol Biol 2018;25(6):463-471.
    96. Guenther EL, Ge P, Trinh H, Sawaya MR, Cascio D, Boyer DR, Gonen T, Zhou ZH, Eisenberg DS. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat Struct Mol Biol 2018;25(4):311-319.
    97. Glabe CG. Structural classification of toxic amyloid oligomers. J Biol Chem 2008;283(44):29639-43.
    98. Verma M, Vats A, Taneja V. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann Indian Acad Neurol 2015;18(2):138-45.
    99. Guerrero-Munoz MJ, Castillo-Carranza DL, Krishnamurthy S, Paulucci-Holthauzen AA, Sengupta U, Lasagna-Reeves CA, Ahmad Y, Jackson GR, Kayed R. Amyloid-beta oligomers as a template for secondary amyloidosis in Alzheimer's disease. Neurobiol Dis 2014;71:14-23.
    100. Afroz T, Hock EM, Ernst P, Foglieni C, Jambeau M, Gilhespy LAB, Laferriere F, Maniecka Z, Pluckthun A, Mittl P and others. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun 2017;8(1):45.
    101. Chang CK, Chiang MH, Toh EK, Chang CF, Huang TH. Molecular mechanism of oxidation-induced TDP-43 RRM1 aggregation and loss of function. FEBS Lett 2013;587(6):575-82.
    102. Cohen TJ, Hwang AW, Unger T, Trojanowski JQ, Lee VM. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. EMBO J 2012;31(5):1241-52.
    103. Kao PF, Chen YR, Liu XB, DeCarli C, Seeley WW, Jin LW. Detection of TDP-43 oligomers in frontotemporal lobar degeneration-TDP. Ann Neurol 2015;78(2):211-21.
    104. Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem 2018;293(16):6090-6098.
    105. Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A, Poser I, Bickle M, Rizk S, Guillen-Boixet J, Franzmann TM and others. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 2018;360(6391):918-921.
    106. Wang A, Conicella AE, Schmidt HB, Martin EW, Rhoads SN, Reeb AN, Nourse A, Ramirez Montero D, Ryan VH, Rohatgi R and others. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. Embo j 2018.
    107. Chen CH, Khan A, Huang JJ, Ulmschneider MB. Mechanisms of Membrane Pore Formation by Amyloidogenic Peptides in Amyotrophic Lateral Sclerosis. Chemistry 2016;22(29):9958-61.
    108. Lim L, Wei Y, Lu Y, Song J. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol 2016;14(1):e1002338.

    QR CODE