簡易檢索 / 詳目顯示

研究生: 王國書
Kuo-Shu Wang
論文名稱: 奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究
Mechanical and Electrical Properties of Carbon nanotubes / Epoxy Resin Nano-Prepreg Laminates for Nanocomposites
指導教授: 葉銘泉
Ming-Chuen Yip
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 143
中文關鍵詞: 奈米碳管積層板機械電性質
外文關鍵詞: carbon nanotubes, Laminates, Mechanical, Electrical
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今由於奈米碳管具有質量輕、導電性、高熱傳導度及熱穩定性等特殊物理特性以及許多潛在的應用如航空、航太、電磁波遮蔽(EMI)材料及靜電釋放材料(ESD)等上。本研究旨在利用奈米碳管進行表面改質,使其具有可反應的官能基。並利用超音波震盪的方式將奈米碳管分散於環氧樹脂基材,並將此高分子基材與碳纖維製備成奈米高分子預浸材積層板(Nano-prepreg Laminates)。並探討添加不同比例的奈米碳管對積層板之機械性質、導電性、電磁波遮蔽效率與疲勞壽命,並觀察材料遭受到不同溫度環境下材料的抵抗能力。結果顯示積層板之機械強度、電性質與電磁波遮蔽效率皆隨著奈米碳管含量增加而增加。在溫度熱循環地方由於基材和纖維間的膨脹係數不匹配導致強度隨週次增加而降低。在相同之疲勞壽命下,添加奈米碳管之積層板的絕對應力比碳纖維/環氧樹脂積層板高。最後利用SEM觀察奈米積層板之破壞面,討論材料的破壞機制。


    Carbon nanotubes have special physical characteristics, such as light weight, electrical conductivity; highly thermal conductivity degree and thermal stability, etc. So there is a lot of potential application such as the aviation , aerospace, electromagnetic interference (EMI) material and electrostatic discharge (ESD),etc. In this paper, carbon nanotubes are treated with oxidizing in organic acids, and the surface modification of the nanotubes improve the quality of mechanical properties for nanocomposites. Carbon nanotubes dispersed into epoxy resin via sonication method and prepared nano-prepreg laminates with polymer matrix and carbon fiber. We investigate the properties of laminates consisting of adding different proportions of carbon nanotubes to the laminates for mechanical properties, electrical conductivity, electromagnetic interference shielding effectiveness and fatigue life, and observe the ability of resisting that materials suffer to the treated material under different temperature environments. The experimental result shows that mechanical strength, electrical conductivity and electromagnetic interference shielding effectiveness increases as the weight percentage of the carbon nanotube increases. In the experiment of thermal cycles treatment, because the coefficient of thermal expansion between the fibers and matrix is not the same, it cause the intensity to reduce with the cycles increased. In the same fatigue life, the absolute stress of carbon nanotube/laminate is higher than carbon fiber/epoxy laminate. Morphologies for the fracture surface of nano-prepreg laminate are observed by scanning electron microscope(SEM).

    表目錄………………………………………………………………..…IV 圖目錄…………………………………………………………………..Ⅵ 第一章 前言……………………………………………………………1 第二章 研究動機………………………………………………………3 第三章 文獻回顧…………………………………………………....…5 3-1 複合材料疲勞性質………………………………..……...5 3-2 疲勞破壞機制………………………………………...…..5 3-3 應力等級對疲勞性質的影響……………….............6 3-4應力(S)與破壞週次(Nf)間的關係……..……....7 3-5 濕氣吸收模型…………………………………………….7 3-6.1電磁波屏蔽理論……………………………………….8 3-6.2電磁波屏蔽之機制.……….…………………………….9 3-7複合材料導電原理……………………………….11 3-8.1環氧樹脂……………………………………..……..12 3-8.2環氧樹脂之硬化反應機制…………………………13 3-9.1奈米碳管之製備及各項性質之量測…………………14 3-9.2奈米碳管複合材料之機械性質………………………15 3-10奈米碳管之表面化學處理及其複合材料……………19 第四章 實驗內容及程序…………………………………………..…23 4-1實驗材料與試劑……………..…………………….23 4-2實驗儀器及設備………………..…….………………24 4-2.1加工設備…………………………………..….….24 4-2.2測試儀器…………………….…………………..….…25 4-3奈米碳管/環氧樹脂之碳纖維積層板奈米複合材料的製 作………………………………………………….....….…29 4-4.1實驗流程…………………………..….………….31 4-4.2實驗測試條件………………………………..……….32 4-4.3實驗測試方法………………………………..……….34 4-5試片使用數量………………………………..……….36 第五章 結果與討論………………………………………………..…37 5-1奈米碳管/高分子預浸材積層板複材之製程技術……..37 5-2 TGA分析……………………………………………...39 5-3奈米碳管表面官能基之鑑定......…..…………….…40 5-4吸濕率分析………….……………………………..….…40 5-5室溫(25℃)下之改質與未改質奈米積層板之機械強度測試…………………………………………………...….…41 5-6 85℃與175℃溫度預處理下改質奈米積層板之抗拉強度測試………………….……………………………..….…43 5-7 85℃與175℃溫度預處理下改質奈米積層板之抗彎強度測試………………….……………………………..….…44 5-8 85℃與175℃溫度預處理下改質奈米積層板之耐衝擊強度測試………….…………………………………..….…44 5-9 85℃/85%RH與175℃/85%RH預處理下改質奈米積層板之抗拉強度測試………….………………………..….…45 5-10 85℃/85%RH與175℃/85%RH預處理下改質奈米積層板之抗彎強度測試…….…………………………..….…46 5-11 85℃/85%RH與175℃/85%RH預處理下改質奈米積層板之耐衝擊強度測試…………………….………..….…46 5-12經不同溫濕度環境條件下實驗結果之整體分析…..…47 5-13經不同熱循環週次條件下抗拉測試結果分析……..…48 5-14拉伸疲勞測試結果分析……………………………..…50 5-15經不同溫濕度環境條件下之導電度分析…………..…51 5-16電磁波遮蔽效率測試………………………………..…53 5-17 SEM型態學分析…………………...………………..…55 5-17.1經不同環境條件下積層板受抗拉測試之型態學分析 …………………………………………………..……..55 5-17.2經不同熱循環週次條件下積層板受抗拉測試之型態學分析……………………………..…………..……..57 5-17.3積層板受軸向拉伸疲勞試驗之型態學分析……...…58 5-17.4經不同環境條件下積層板受抗彎測試之型態學分析 ……………...………………………………………….58 5-17.5經不同環境條件下積層板受耐衝擊測試之型態學分析……………………………………………..…….…….60 第六章 結論………………………………………………..…63 參考文獻…………………………………………………………..……66 附表………………………………………………………………..……74 附圖………………………………………………………………..……80 表目錄 表3-1不同dB值所代表之遮蔽效果……………………..74 表3-2碳管與傳統材料的機械強度及密度比較……………..74 表5-1改質奈米碳管之FTIR特徵吸收峰對應表…………….74 表5-2室溫下CNT/Epoxy Laminates之抗拉強度…………….74 表5-3室溫下Modified-CNT/Epoxy Laminates之抗拉強度…….75 表5-4室溫下CNT/Epoxy Laminates之抗彎強度……………….75 表5-5室溫下Modified-CNT/Epoxy Laminates之抗彎強度…….75 表5-6室溫下CNT/Epoxy Laminates之耐衝擊強度………….….75 表5-7室溫下Modified-CNT/Epoxy Laminates之耐衝擊強度…….75 表5-8 85℃預處理下Modified-CNT/Epoxy Laminates之抗拉強度….75 表5-9 175℃預處理下Modified-CNT/Epoxy Laminates之抗拉強度..75 表5-10 85℃預處理下Modified-CNT/Epoxy Laminates之抗彎強度..76 表5-11 175℃預處理下Modified-CNT/Epoxy Laminates之抗彎強度.76 表5-12 85℃預處理下Modified-CNT/Epoxy Laminates之耐衝擊強度 ………………………………………………………………....76 表5-13 175℃預處理下Modified-CNT/Epoxy Laminates之耐衝擊強度 ………………………………………………………………....76 表5-14 85℃/85%RH預處理下Modified-CNT/Epoxy Laminates之抗拉強度…………………………………………………..………....76 表5-15 175℃/85%RH預處理下Modified-CNT/Epoxy Laminates之抗拉強度………………………………………………..………....76 表5-16 85℃/85%RH預處理下Modified-CNT/Epoxy Laminates之抗彎強度…………………………………………………..………....77 表5-17 175℃/85%RH預處理下Modified-CNT/Epoxy Laminates之抗彎強度………………………………………………..………....77 表5-18 85℃/85%RH預處理下Modified-CNT/Epoxy Laminates之耐衝擊強度………………………………………………..………....77 表5-19 175℃/85%RH預處理下Modified-CNT/Epoxy Laminates之耐衝擊強度……………………………………………..………....77 表5-20熱循環100週次Modified-CNT/Epoxy Laminates之抗拉強度 ………………………………………………………..………....77 表5-21熱循環200週次Modified-CNT/Epoxy Laminates之抗拉強度 ………………………………………………………..………....77 表5-22熱循環300週次Modified-CNT/Epoxy Laminates之抗拉強度 ………………………………………………………..………....78 表5-23熱循環400週次Modified-CNT/Epoxy Laminates之抗拉強度 ………………………………………………………..………....78 表5-24 Modified-CNT/Epoxy Laminates之熱膨脹係數………….….78 表5-25室溫下Carbon fiber/Epoxy Laminates之疲勞壽命.………...78 表5-26室溫下1phr Modified-CNT/Epoxy Laminates之疲勞壽命…..78 表5-27室溫下CNT/Epoxy Laminates之表面導電度………………..79 表5-28室溫下Modified-CNT/Epoxy Laminates之表面導電度……..79 表5-29 175℃溫度預處理下Modified-CNT/Epoxy Laminates之表面導電度……………………………………………………………..79 表5-30 175℃/85%RH溫濕度預處理下Modified-CNT/Epoxy Laminates之表面導電度…………………………..……..…..79 表5-31經熱循環400週次下Modified-CNT/Epoxy Laminates之表面導電度…………………………………………………………..79 表5-32 Modified-CNT/Epoxy Laminates之EMI SE………..………..79 圖目錄 圖1-1 Surface resistivity spectrum 表面阻抗值光譜……………..…80 圖3-1 複合材料積層板損壞發展示意圖………...…………………...80 圖3-2電磁波的組成…………………………………...........................81 圖3-3電磁波的屏蔽原理圖……………………………….…………..81 圖3-4導電率與導電填料用量之關係...................................................82 圖3-5鏈狀式導電通路原理示意圖……………………………..…….82 圖3-6環氧樹脂硬化過程………………………………………….…..83 圖3-7單層奈米碳管及多層奈米碳管………………………..………..83 圖4-1預浸材的含浸裝置………………………………………….…..84 圖4-2磁力攪拌機……………………………………………………..84 圖4-3直流攪拌機……………………………….…………………..85 圖4-4烘箱…………………………………………………………..85 圖4-5熱壓機……………………………………………………..86 圖4-6 鑚石切割機…………………………………………………..86 圖4-7微差熱掃瞄分析儀(DSC)…………………….……………..87 圖4-8熱重量分析儀(TGA )………………………………………..87 圖4-9靜態熱機械分析儀(TMA)…………………………………..88 圖4-10傅立葉轉換紅外線光譜儀(FTIR)……………………………..88 圖4-11 Instron-1322型動態萬能試驗機……………………...…..89 圖4-12 Instron-4468型萬能試驗機………………….…………….89 圖4-13擺錘式衝擊試驗機………………………………….………90 圖4-14恆溫恆濕機…………………………………………………90 圖4-15熱循環機……………………………………………………91 圖4-16四點探針電阻儀……………………………………………91 圖4-17高阻計…………………………………………….……………92 圖4-18 EMI SE量測裝置頻譜儀與同軸管………………………..….92 圖4-19掃描式電子顯微鏡(SEM)…………………………….………..93 圖4-20鍍金機…………………………………………………………..93 圖4-21奈米碳管改質裝置圖…………………………………………..94 圖4-22試片熱壓的升壓操作條件流程圖……………………………..94 圖4-23熱壓成功之試片………………………………………………..95 圖4-24(a)靜態拉伸與(b)抗彎試片尺寸示意圖……………….…..95 圖4-25耐衝擊試片尺寸示意圖………………………….……………96 圖4-26靜態強度實驗流程……………………………………………..96 圖4-27疲勞實驗流程…………………………………………………..97 圖4-28熱循環溫度和時間關係圖…………………………….………97 圖5-1未SEM觀察下的CNT結構圖………………….……………98 圖5-2 Epoxy之DSC-Temperature曲線………………………..……..98 圖5-3 Epoxy之DSC-Time曲線……………………………..………..99 圖5-4熱壓成功之試片………….……………………………………..99 圖5-5 TGA分析之比較圖…….…………………………..………. 100 圖5-6 FTIR光譜分析圖…….…………………………………….…..100 圖5-7 25℃/85%RH對兩種積層板之時間-重量增加圖…….…..…..101 圖5-8 85℃/85%RH對兩種積層板之時間-重量增加圖….………....101 圖5-9未改質與改質後奈米積層板之抗拉強度….…..………..…....102 圖5-10未改質與改質後奈米積層板之抗彎強度……………..….....102 圖5-11未改質與改質後奈米積層板之耐衝擊強度…………….......103 圖5-12未經改質之奈米碳管在樹脂基材的分散情形(5000倍).......103 圖5-13未經改質之奈米碳管在樹脂基材的分散情形(50000倍).......104 圖5-14經改質之奈米碳管在樹脂基材的分散情形(10000倍)...........104 圖5-15經改質之奈米碳管在樹脂基材的分散情形(50000倍)...........105 圖5-16溫度預處理下Modified-CNT/Epoxy Laminates之抗拉強度.105 圖5-17溫度預處理下Modified-CNT/Epoxy Laminates之抗彎強度.106 圖5-18溫度預處理下Modified-CNT/Epoxy Laminates之耐衝擊強度 ..................................................................................................106 圖5-19溫濕度預處理下Modified-CNT/Epoxy Laminates之抗拉強度 ..................................................................................................107 圖5-20溫濕度預處理下Modified-CNT/Epoxy Laminates之抗彎強度 ..................................................................................................107 圖5-21溫濕度預處理下Modified-CNT/Epoxy Laminates之耐衝擊強 度..............................................................................................108 圖5-22不同環境測試下Modified-CNT/Epoxy Laminates之抗拉強度 ..................................................................................................108 圖5-23不同環境測試下Modified-CNT/Epoxy Laminates之抗彎強度 ..................................................................................................109 圖5-24不同環境測試下Modified-CNT/Epoxy Laminates之耐衝擊強 度..............................................................................................109 圖5-25熱循環環境下Modified-CNT/Epoxy Laminates之抗拉強度 ..................................................................................................110 圖5-26熱循環環境下Modified-CNT/Epoxy Laminates之抗拉強度 ..................................................................................................110 圖5-27 Modified-CNT/Epoxy Laminates之熱膨脹係數....................111 圖5-28 Carbon fiber/Epoxy Laminates之疲勞壽命(Normalized).......111 圖5-29 1phr Modified-CNT/Epoxy Laminates之疲勞壽命(Normalized) ..................................................................................................112 圖5-30兩種積層板之疲勞壽命整體比較(Normalized) .....................112 圖5-31兩種積層板之疲勞壽命整體比較(絕對應力) ........................113 圖5-32未改質與改質後奈米碳管積層板之導電度............................113 圖5-33溫度預處理下Modified-CNT/Epoxy Laminates之導電度.....114 圖5-34溫濕度預處理下Modified-CNT/Epoxy Laminates之導電度..114 圖5-35熱循環400週次下Modified-CNT/Epoxy Laminates之導電度 ..................................................................................................115 圖5-36 Carbon fiber/Epoxy Laminates之EMI SE...............................115 圖5-37 Modified-CNT/Epoxy Laminates之EMI SE...........................116 圖5-38 Modified-CNT/Epoxy Laminates之EMI SE...........................116 圖5-39室溫下積層板之拉伸破壞斷面圖(500倍).............................117 圖5-40室溫下奈米積層板之拉伸破壞斷面圖(500倍).......................117 圖5-41室溫下積層板之拉伸破壞斷面圖(50倍)................................118 圖5-42室溫下奈米積層板之拉伸破壞斷面圖(50倍).........................118 圖5-43 85℃下積層板之拉伸破壞斷面圖(50倍)................................119 圖5-44 85℃下奈米積層板之拉伸破壞斷面圖(50倍)........................119 圖5-45 175℃下積層板之拉伸破壞斷面圖(150倍)............................120 圖5-46 175℃下奈米積層板之拉伸破壞斷面圖(150倍)....................120 圖5-47 85℃/85%RH下積層板之拉伸破壞斷面圖(50倍).................121 圖5-48 85℃/85%RH下積層板之拉伸破壞斷面圖(50倍).................121 圖5-49 175℃/85%RH下積層板之拉伸破壞斷面圖(250倍)..............122 圖5-50 175℃/85%RH下奈米積層板之拉伸破壞斷面圖(250倍)......122 圖5-51熱循環100週次下積層板之拉伸破壞斷面圖(500倍)…......123 圖5-52熱循環100週次下積層板之拉伸破壞斷面圖(1000倍)…......123 圖5-53熱循環400週次下積層板之拉伸破壞斷面圖(500倍)…......124 圖5-54熱循環400週次下積層板之拉伸破壞斷面圖(1000倍)…......124 圖5-55熱循環100週次下奈米積層板之拉伸破壞斷面圖(500倍)...125 圖5-56熱循環100週次下奈米積層板之拉伸破壞斷面圖(1000倍)..125 圖5-57熱循環400週次下奈米積層板之拉伸破壞斷面圖(500倍)...126 圖5-58熱循環400週次下奈米積層板之拉伸破壞斷面圖(1000倍)..126 圖5-59室溫下積層板之疲勞破壞斷面圖(599週次)………………..127 圖5-60室溫下積層板之疲勞破壞斷面圖(102172週次)………..…..127 圖5-61室溫下奈米積層板之疲勞破壞斷面圖(810週次)…………..128 圖5-62室溫下奈米積層板之疲勞破壞斷面圖(133714週次)…..…..128 圖5-63室溫下積層板之抗彎破壞斷面圖(1000倍)……………..…..129 圖5-64室溫下奈米積層板之抗彎破壞斷面圖(1000倍)………..…..129 圖5-65室溫下積層板之抗彎破壞斷面圖(250倍)……………….…..130 圖5-66室溫下積層板之抗彎破壞斷面圖(2000倍)……………...…..130 圖5-67室溫下奈米積層板之抗彎破壞斷面圖(150倍)………....…..131 圖5-68室溫下奈米積層板之抗彎破壞斷面圖(500倍)………....…..131 圖5-69室溫下積層板之抗彎破壞斷面圖(150倍)……………....…..132 圖5-70室溫下奈米積層板之抗彎破壞斷面圖(150倍)………....…..132 圖5-71 85℃下積層板之抗彎破壞斷面圖(250倍)……………....…..133 圖5-72 85℃下奈米積層板之抗彎破壞斷面圖(250倍)……………..133 圖5-73 175℃下積層板之抗彎破壞斷面圖(250倍)………..………..134 圖5-74 175℃下奈米積層板之抗彎破壞斷面圖(250倍)……..……..134 圖5-75 85℃/85%RH下積層板之抗彎破壞斷面圖(250倍)….……..135 圖5-76 85℃/85%RH下奈米積層板之抗彎破壞斷面圖(250倍).…..135 圖5-77 175℃/85%RH下積層板之抗彎破壞斷面圖(150倍).…….....136 圖5-78 175℃/85%RH下奈米積層板之抗彎破壞斷面圖(150倍).....136 圖5-79室溫下積層板之耐衝擊破壞斷面圖(500倍)..........................137 圖5-80室溫下奈米積層板之耐衝擊破壞斷面圖(500倍)...................137 圖5-81室溫下奈米積層板之耐衝擊破壞斷面圖(500倍)...................138 圖5-82室溫下奈米積層板之耐衝擊破壞斷面圖(500倍)...................138 圖5-83室溫下積層板之耐衝擊破壞斷面圖(250倍)..........................139 圖5-84室溫下奈米積層板之耐衝擊破壞斷面圖(250倍)...................139 圖5-85 85℃下積層板之耐衝擊破壞斷面圖(250倍)..........................140 圖5-86 85℃下奈米積層板之耐衝擊破壞斷面圖(250倍)..................140 圖5-87 175℃下積層板之耐衝擊破壞斷面圖(250倍)........................141 圖5-88 175℃下奈米積層板之耐衝擊破壞斷面圖(250倍)................141 圖5-89 85℃/85%RH下積層板之耐衝擊破壞斷面圖(500倍)............142 圖5-90 85℃/85%RH下奈米積層板之耐衝擊破壞斷面圖(500倍)....142 圖5-91 175℃/85%RH下積層板之耐衝擊破壞斷面圖(250倍).........143 圖5-92 175℃/85%RH下奈米積層板之耐衝擊破壞斷面圖(250倍)..143

    1. http://www.asiateck.com.tw/index.htm亞特必股份有限公司.
    2. H. S. Katz and J. V. Milewski., “Handbook of fillers for plastics,” New York:/Van Nostrand Reninhold Co., (1987).
    3. 成會明, “奈米碳管,” 五南圖書出版股份有限公司, 台灣台北, 2004年.
    4. H. O. Fuch and R. I. Stephens, “Metal Fatigue in Engineering,” John Willy and Sons, New York, (1980).
    5. D. S. Saunders and G. Clark, “Fatigue Damage in Composite Laminates,” Materials Forum, Vol. 17, (1993), pp.309-331.
    6. R. D. Jamison, K. Schulte, K. L. Reifsnider and W. W. Stinchcomb,“Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, (1984), pp.21-55.
    7. K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, (1983), pp.399-420.
    8. N. H. Tai,C. C. M. Ma and S. H. Wu, “Fatigue Behaviour of Carbon Fibre/PEEK Laminate Composites,” Composites, Vol .26, (1995), pp. 551-559.
    9. R. Talreja, “Fatigue of Composite Materials,” Technomic, Pennsylavania U.S.A., (1987).
    10. W. Hwang and K. S. Han, “Fatigue of Composites Fatigue Modulus
    Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, (1986), pp.154-165.
    11. W. P. Dewilde and P. Frolkovic, “The Modeling of Moisture Absorption in Epoxies: Effects at the Boundaries,” Composites, Vol. 25, No. 2, (1994), pp.111-119.
    12. I. Novak., I. Chodak., Investigation of the correlateion between electrical conductiveity and elongateion at break in polyurethane-based adhesives, Synthesis Metal, Vol. 131, (2002), pp.93-98.
    13. 岡村迪夫, 淺談電磁干擾, 全華科技圖書公司, 2004年.
    14. 天笠啟祐, 電磁波的夢饜, 台北巿,創意力文化公司, 1997年.
    15. R. J. W. Donald and M. Michel, “Electromagnetic Shielding,” A handbook series on electromagnetic interference and compatibility, Vol. 3, chapter 2, 6 and 7, (1988).
    16. R. P. Clayton, “Introduction to Electromagnetic Compatibility,” Wiley series in Microwave and Optical Engineering, (1992), pp632-648.
    17. K. C. David, “Field and Wave Electromagnetic,” Reading , Mass. Addison Wesley, (1989), pp198-219.
    18. G. Lu, ”Electrical and shielding properties of ABS resin field with nickel-coated carbon fibers, Composite Science and Technology, Vol. 56, (1996),pp.193-200.
    19. 沈曉復, 新產業EMI/EMC之市場與商機, 塑膠資訊, 21, 8, 1998年.
    20. J. Goedboed, B.V. Boeken, Electromagnetic Compatibility, Kluwer Technoische, Deventer, The Netherlands, (1990).
    21. J. P. B. Mallick, Electromagnetic interference shielding by carbon fiber-filled polychloroprene rubber composites, Composites, Vol. 22, (1991), pp.451-455.
    22. I. Novak and I. Chodak, Investigation of the correlateion between electrical conductiveity and elongateion at break in polyurethane-based adhesives, Synthesis Metal, Vol. 131, (2002), pp.93-98.
    23. 盧敏彥, 「導電塑膠應用, 電磁干擾遮蔽」, 化工資訊, 第12卷,第15-23頁, 1998年, 6月.
    24. 郭衛紅、汪濟奎,現代功能材料及其應用,北京,化學工業出版社,第20-33頁,2002年。
    25. M. T. Kortschot and R. T. Woodhams, Computer Simulation of the Electrical Conductivity of Polymer composite Containing Matallic Fillers, Polymer Composite, Vol. 9, No.1, February, (1988), pp.60-71.
    26. 沈永清 導電性塑膠材料技術發展介紹 化工資訊月刊,9月,1998年。
    27. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (1991), pp.354-356.
    28. T. W. Odom, J. L. Huang, P. Kim and C.M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes,” J. Phys. Chem. (2000), pp.2794-2809.
    29. E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review,” Composites Science and Technology, Vol. 61, (2001), pp. 1899-1912.
    30. K. T. Lau and D. Hui, “The Revolutionary Creation of New Advanced Materials-Carbon Nanotube Composites, ” Composites Part B: Engineering, Vol. 33, (2002), pp. 263-277.
    31. Z. F. Ren, Z. P. Huang, J. W Xu, D. Z. Wang, J. G. Wen and J. H. Wang, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Applied Physics Letters (1999), pp. 1086–1088.
    32. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P. Siegal, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, Vol. 282, (1998), pp.1105–1107.
    33. M. M. J. Treacy , T. W. Ebbesen and T. M. Gibson, “Exceptionally High young’s modulus observed for individual carbon nanotubes,” Nature, Vol.381, (1996), pp. 678–680.
    34. E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, Vol. 277, (1997), pp.1971–5.
    35. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert and K. A Smith, “Elastic strain of freely suspended single-wall carbon nanotube ropes,” Applied Physics Letters, Vol. 74, (1999), pp.3803–3805.
    36. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes, ” Materials Science and Engineering A, Vol. 334, (2002), pp.173-178.
    37. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Mechanical and Physical Properties on Carbon Nanotube, ” Journal of Physics and Chemistry of Solids, Vol. 61, (2000) , pp. 1153-1158.
    38. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez and J. M. Benoit, “Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerization and charge transfer through siteselective interaction,” Chem. Comm., Vol. 16, (2001), pp.1450–1451.
    39. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites,” Polymer, Vol. 43, (2002), pp.1701–1703.
    40. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,”Applied Physics Letters,Vol.76,(2000), pp.2868–2870.
    41. A. Peigney, E. Flahaut, C. H. Laurent, F. Chastel and A. Rousset, “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chemical Physics Letters, Vol. 352, (2002), pp.20–25.
    42. A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology ,Vol. 62,(2002), pp.1993~1998.
    43. Q. Li, M. Zaiser and V. Koutsos, “Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent, ” Phys. Stat. Sol. (a) 201 (2004) R89.
    44. D. S. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear 252 (2002), pp.512–517.
    45. J. Suhr, N. Koratkar, P. Keblinski and P. Ajayan, “Viscoelasticity in carbon nanotube composites,” Nature Materials , Vol. 4 , (2005) , pp.134-137.
    46. H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix,”Applied Physics Letters, (1998), Vol. 72, pp.188–190.
    47. O. Lourie and H. D. Wagner, “Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites,” Composites Science and Technology, Vol. 59, (1999), pp.975–977.
    48. S. L. Ruan, P. Gao and X.G. Yang, “Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes,” Polymer, Vol. 44, (2003),pp.5643–54.
    49. W. Tang, M. H. Santare and S. G. Advani, “Melt processing and mechanical property characterization of multi-walled carbon nanotube/ high density polyethylene (MWNT/HDPE) composite films,” Carbon, Vol. 41, (2003), pp.2779–2785.
    50. J. M. Park, D. S. Kim, J. R. Lee and T. W. Kim, “Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique,” Materials Science and Engineering C, Vol. 23, (2003), pp. 971–975.
    51. J. M. Park, J. W. Kim and D. J. Yoon, J. Colloid Interface Science Vol. 247, (2002), pp.231.
    52. R. Andrews, M. C. Weisenberger, “Carbon nanotube polymer composites,” Current Opinion in Solid State and Materials Science, Vol. 8, (2004), pp.31–37.
    53. K-T. Lau, D. Hui, “The revolutionary creation of new advanced materials–carbon nanotube composites,” Composites Part B, Vol. 33, (2002), pp.263–77.
    54. Y. Ren, F. Li, H-M Cheng, K. Liao, “Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced-epoxy composite,” Carbon, Vol.41, (2003), pp.2159–79.
    55. Du, Ying, Bai, Li, Sun and Cheng, “Microstructure and Resistivity of Carbon Nanotube and Nanofiber/Epoxy Matrix Nanocomposite. ” International Journal of Nanoscience, Vol. 1, Nos. 5 & 6 (2002), pp.719~723.
    56. H. Gojny and K. Schulte, “Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, ” Chemical Physics Letters, Vol. 370, (2003), pp.820~824.
    57. L. Valentini, D. Puglia, E. Frulloni, I. Armentano, J.M. Kenny and S. Santucci, “Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites, ” Composite Science and Technology, Vol. 64, (2004), pp.23~33.
    58. Jiang Zhu, JongDae Kim, Haiqing Peng, John L. Margrave, Valery N. Khabashesku and Enrique V. Barrera, “Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization “, Nano Letters, Vol. 3 No.8 (2003), pp.1107~1113.
    59. Y. S. Song and J. R. Youn, “Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation, ” Korea-Australia Rheology Journal, Vol. 16, (2004), pp.201.
    60. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung and H. G. Yoon “Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites” Carbon 43 (2005), pp.23–30.
    61. Y. Ren, Y. Q. Fu, K. Liao, F. Li and H. M. Cheng “Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy” APPLIED PHYSICS LETTERS, Vol. 84(15), (2004), pp.2811.
    62. Y. Breton, G. D. Esarmot, J. P. Salvetat, S. Delpeux, C. Sinturel, F. B. eguin and S. Bonnamy “Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology” Carbon 42 (2004), pp.1027–1030.
    63. H. S. Hedia, L. Allie, S. Ganguli and H. Aglan “The influence of nanoadhesives on the tensile properties and Mode-Ι fracture toughness of bonded joints” Engineering Fracture Mechanics 73 (2006), pp.1826–1832.
    64. Kin-tak Lau, San-Qiang Shi and Hui-ming Cheng “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures” Composite Science and Technology 63 (2003), pp.1161–1164.
    65. R. J. Morgan “The microscopic failure processes and their relation to the structure of amine-cured bisphenyl-A diglycidyl ether epoxies” J. Mater. Sci. 12 (1979), pp.1966.
    66. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM D3039, (1998), pp.99-109.
    67. “Standard Test Method for Tensile Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials ,” ASTM D790, (1996), pp414-425.
    68. “Standard Test Method for Determining the Pendulum Impact Resistance of Notched Specimens of Plastics ,” ASTM D256, (1996), pp1-18.
    69. “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composites,” ASTM D3479-96, (1998), pp133-138.
    70. ASTM Standard, ASTM designation: D570-98, “Standard Test Method for Water Absorption of Plastics,” (1998).
    71. “Test Methods for dc resistance or conductance of insulating materials,” ASTM D257, (1999).
    72. “Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials,” ASTM D4935-99, (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE