簡易檢索 / 詳目顯示

研究生: 陳衛群
Ven-Chin Chen
論文名稱: 滿足三角不等式之旅行者推銷員問題的分支界定解法研究
Design the Branch-and-Bound Algorithm for the ETSP
指導教授: 唐傳義
Chuan-Yi Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 36
中文關鍵詞: 分支界定解法近似解法最佳化
外文關鍵詞: branch-and-bound, etsp, atsp, tsp, approximation algorithm
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Traveling Salesperson Problem(TSP)是一個相當有名的NP-Completeness問題,在過去有各式各樣的相關演算法被提出來。它所涵蓋的問題相當多,而且許多問題之間會有A問題包含B問題的關係存在。只要有這種關係存在,我們就可以使用A問題的Algorithm去解B問題。例如,以ETSP(Euclidean TSP)、STSP(Symmetric TSP)和ATSP(Asymmetric TSP)這三種著名的TSP問題來說,ETSP的問題包含於STSP的問題,而STSP的問題則包含於ATSP的問題中。若我們為ATSP問題發展出一個求最佳解的Algorithm,則它不但可以解決ATSP的問題,也可以用來解決STSP和ETSP的問題。
    就目前所知,用來求ATSP問題最佳解的較好的方法有variable terpoles及LC branch-and-bound的Algorithm。而STSP及ETSP問題則尚無較有效率的解法,一般人在解這兩種問題時,還是會使用為ATSP問題所設計的branch-and-bound algorithm來求。當我們得知這樣的訊息後感到好奇,為什麼ETSP沒有其它更有效率的解法呢?我們是不是可以嘗試去找出一個更好的方法?在本篇論文裡,我們試著去找出這些問題的答案。

    在本論文中,我們嘗試各種結合Approximation Algorithm及branch-and-bound algorithm的方法,期望能為ETSP問題找出一個更好且更有效率的Algorithm。我們所採用的方法共分下列兩大類:

    1. 將Approximation Algorithm當作Preprocessor解出問題的近似解,然後將該值設定給branch-and-bound的Upper Bound,再跑branch-and-bound程式。

    2. 在每些nodes上跑一次Approximation Algorithm得近似解,branch-and-bound程式再根據該值做適當的Bounding動作。


    Traveling Salesperson Problem is a very famous problem of NP-Completeness, and all kinds of algorithms were been issued. This problem covers many sub-problems, and the relation that some sub-problems B include other sub-problems A exists. If the relationship exists, we can use the algorithm for solving problem A to find the solution for problem B. For example, Euclidean TSP (ETSP), Symmetric TSP (STSP) and Asymmetric TSP (ATSP) are three noted sub-problems of the TSP. There exists the relation, which ETSP is included in STSP and STSP is included in ATSP among them. In other words, if we found an optimization algorithm for the ATSP, it also can be used to solve STSP and ETSP.
    As everyone knows, two good branch-and-bound algorithms for solving ATSP are variable terpoles and LC branch-and-bound algorithms, but no any good branch-and-bound algorithms for the STSP and ETSP presently exists. We are very curious that why doesn’t the algorithm for the ETSP exist and can we find out a good branch-and-bound algorithm for it.

    We tried all kinds of ways, which combine the approximation algorithm and branch-and-bound algorithm in my thesis, and we attempted to find the branch-and-bound algorithms, which are better and more efficient than original ones. There are two classifications in our methods:

    1. The approximation algorithm is used as the preprocessor of the branch-and-bound algorithm.

    2. To run approximation algorithm once at each node for getting the approximate solution, then to bound the appropriate nodes according to the solution.

    摘要 1 Abstract 2 第 1 章 序言 7 第 2 章 背景知識與相關研究 8 2.1 Euclidean Traveling Salesperson Problem (ETSP) 8 2.2 Branch-and-Bound演算法 8 2.2.1 解ATSP問題的Variable terpols Branch-and-Bound演算法 9 2.2.2 解ATSP問題的LC Branch-and-Bound演算法 12 2.3 c倍近似解演算法 15 2.3.1 解ETSP問題的1.5倍近似解演算法 16 2.3.2 解ETSP問題的2倍近似解演算法 18 第 3 章 我們的方法 20 3.1 加上近似解演算法作為前置處理的branch-and-bound演算法 20 3.2 將2倍近似解演算法整合到branch-and-bound演算法中 22 3.2.1 如何整合 22 3.2.2 如何確保一些必走的邊會包含在近似路徑中? 23 3.2.3 執行修改後的近似演算法所得到的解是否仍保證在最佳解的二倍之內? 25 3.2.4 將2倍近似解演算法整合到variable terpoles branch-and-bound演算法中。其中的近似演算法只在V/2層中執行,用以求得該節點的lower bound及upper bound 26 3.2.5 將2倍近似解演算法整合到variable terpoles branch-and-bound演算法中。其中的近似演算法在所有節點中執行,用以求得該節點的upper bound 27 3.2.6 將2倍近似解演算法整合到variable terpoles branch-and-bound演算法中。其中的近似演算法在所有節點中執行,用以求得該節點的lower bound及upper bound 28 第 4 章 模擬及結果 30 4.1 測試平台 30 4.2 測試資料的規格 30 4.3 實驗結果 31 4.3.1 variable terpoles branch-and-bound的程式及其修改後的方法 31 4.3.2 LC branch-and-bound的程式及其修改後的方法 32 第 5 章 結論及未來發展 34 5.1 結論 34 5.2 未來發展 34 參考文獻 35

    1. Sanjeev Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS), 1996.
    2. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy kan and D. B. Shmoys, The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons Ltd, pp58 – 61 and 152 – 164, 1985.
    3. R. C. T. Lee, R. C. Chang, S. S. Tseng, and Y. T. Tsai, Introduction to the Design and Analysis of Algorithms, 松崗電腦圖書資料股份有限公司, pp 297 – 308, 314 – 320 and 471 – 476, 1999.
    4. Ellis Horowitz and Sartaj Sahni, Fundamentals of Computer Algorithms, Computer Science Press, pp 403 – 412, 1978.
    5. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algorithms, The Massachusetts Institute of Technology, pp 959 – 960 and 969 – 972, 1990
    6. G. Ausiello, P. Crescenzi, and G. Gambosi, Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer-Verlag Berlin Heidelberg, pp 94 – 100 and 322 – 329, 1999.
    7. Stephan Mertens, http://itp.nat.uni-magdeburg.de/~mertens/TSP/node1.html
    8. David Applegate, Robert Bixby, Vašek Chvátal and William Cook, Concorde: A code for solving Traveling Salesman Problems, http://www.math.princeton.edu/tsp/concorde.html
    9. Kreimer Natasha, Traveling Salesman Problem: Approximation Algorithms, http://www.math.tau.ac.il/~sariel/TA/wcg98b/tsp/TspAlg.html
    10. Pablo Moscato, TSPBIB Home Page, http://www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html
    11. Shmulik London, Traveling-Salesman Example (Bruteforce), http://www.cs.huji.ac.il/~popcorn/developer/examples/bruthforth_tsp/
    12. Allon Percus, Traveling Salesman Problem, http://cnls.lanl.gov/Highlights/1998-12/html/node3.html
    13. Robert Dakin, A simple insertion algorithm, http://www.pcug.org.au/~dakin/tspbb.htm
    14. Chris Nevison, Branch and Bound Solution to TSP, http://cs.colgate.edu/faculty/nevison.pub/web102/web102F98/ProjBandBTSP.htm
    15. Ronald E. Giachetti, Traveling Salesman Problem, http://www.eng.fiu.edu:90/giachetti/ORApplications/LectureNotes/tsp.pdf
    16. Algorithm Design Techniques: Searching, http://www.cise.ufl.edu/~jhammer/classes/3530/Spring99/lectures/lecture_37.pdf
    17. Branch and Bound for TSP, http://www.imm.dtu.dk/~jha/TSP.Eng.pdf
    18. Relaxed Algorithm, http://campus.murraystate.edu/academic/faculty/bob.pilgrim/445/algorithms_9.html
    19. Silke Rosenow, Comparison of an exact branch-and-bound and an approximative evolutionary algorithm for the probabilistic traveling salesman problem, http://www.unibw-hamburg.de/WWEB/math/uebe/paper-engl-SOR98.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE