簡易檢索 / 詳目顯示

研究生: 胡發鈞
Hu, Fa-Chun
論文名稱: 染料敏化太陽能電池之元件最佳化及其光電性質研究
Device Optimization and Photovoltaic Properties of Dye-Sensitized Solar Cells
指導教授: 季昀
Chi, Yun
口試委員: 季昀
Chi, Yun
黃哲勳
Huang, Jer-Shing
衛子健
Wei, Tzu-Chien
林建村
Lin, Jiann-T'suen
孫世勝
Sun, Shih-Sheng
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 190
中文關鍵詞: 染料敏化太陽能電池釕金屬染料鋨金屬染料元件最佳化光電性質研究
外文關鍵詞: Dye-sensitized solar cell, Ru sensitizer, Os sensitizer, device optimization, Photovoltaic Properties
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在本論文中將分成三個部分進行探討,雙牙配位基釕金屬錯合物、三牙配位基釕金屬錯合物以及鋨金屬錯合物,而在這三個部分中,又會針對不同系列的染料分子結構進行元件端之最佳化與光電性質探討。
    第一部分 雙牙配位基釕金屬錯合物
    以TFRS-51為基礎的設計為主要架構,在isoquinoline上的6號位或5、7號位修飾官能團,藉由官能團的引入討論是否能夠保護TiO2表面並阻止charge recombination的發生以提升光電轉化效率之表現。因此在部分便是以不同類型的官能團在雙牙配位基上修飾的研究,並進行光物理以及DSSC元件效率表現等行為探討。在本系列中,我們成功了利用大立障官能基團、2-hexythienyl (ht)、diphenylamine與 indoline的引入,除了能夠有效的避免傳導至TiO2表面之受激發電子與電解液再結合的發生之外,對於染料與染料之間堆疊機會的發生也有很好的抑制效果,因此最後可以達到高開路電壓與優異的DSSC元件效率表現。
    另外一部分藉由4,4',5,5'-tetra-carboxy-2,2'-bipyridine anchor的引入,期望達到如同4,4',4''-tricarboxy-2,2':6',2''-terpyridine的分子設計優點並兼顧高吸光係數的特色並將其應用在最具代表性的TFRS-2與TFRS-52的染料架構上。

    第二部分 三牙配位基釕金屬錯合物
    在三牙配位基的分子設計當中,捨棄掉4,4’4”-tricarboxy-2,2’:6’,2”-terpyridine, tctpy的舊有設計方式,以quinoline取代一個pyridine形成6-quinolin-8-yl-(2,2'-bipyridine), Qbpy;並且僅留下兩個carboxylic goup作為anchoring group的功用,利用這樣的分子構型除了希望可以達到在ππ*及MLCT上有高吸光係數的目的之外;也可以捨棄以往為了延伸共軛所引入的thiophene 或其衍生物所造成的charge recombination發生的機會。因此,在本系列,針對光物理以及元件上的參數最佳化探討後發現,此類型的染料分子設計由於Qbpy與t-Butyl的引入,TF-
    32~33染料元件可以達到10%以上的光電轉化效率,其中更可以有效阻止染料堆疊以及charge recombination的發生。另一部分,藉由討論大立障官能基 (t-butyl) 在染料立體位置上的改變而觀察到會因為t-Butyl大立障官能團遠離TiO2表面的關係,不能有效避免TiO2表面與電解液之接觸,導致觀察到較短的electron lifetime發生。
    最後一部分將延續2009年的研究方向,將tctpy系統置換為Qbpy並進行探討。希望藉此增加染料分子的吸光係數外並提升在DSSC元件的特性表現,其結果發現,此系列PRT-21~24 染料其光電轉化效率皆可達到10%以上之光電轉化效率,因此類型的染料分子設計除了藉由NCS 單配位基團與雙牙配位基及高共軛基團的引入以達到高電流表現目的之外,大立障官能團與Qbpy的引入更可以有效阻止染料堆疊以及charge recombination的發生,無疑是為將來開發高效率染料分子的設計模式提供了一個明確的方向。

    第三部分 鋨金屬錯合物
    2012年發表了中心金屬以Os 取代 Ru 的染料 TF-51 及 TF-52,其吸收光譜可紅位移至900 nm, IPCE 光譜則可延伸至1000 nm,搭配使用比 pyrazolate 拉電子性質更強的 triazolate,可有效拉低 HOMO 能階使染料順利再生。
    而根據此設計概念,本單元利用雙牙配位基的分子設計方式合成鋨金屬錯合物敏化劑,發現引入大立障官能團 (t-Butyl) 修飾於pyridine上確實可以減少charge recombination 發生機會之外,並由原先中心 pyridine 換成兩個氮的雜環 pyrimidine 分子,在增加高陰電性原子時,探討 HOMO 能階、吸收光譜波形的影響及元件上光電轉化效率表現,其結果發現,此系列TFOS-1~3染料元件效率雖然僅只有5~6%左右,但其IPCE光譜吸收範圍卻可以一路延伸至1000 nm,確實可以為未來的工作開啟了一條嶄新的路。


    目錄 圖目錄 v 表目錄 ix 第一章、序論 - 1 - 第一節、前言 - 1 - 第二節、DSSC 的基本工作原理 - 4 - 第三節、DSSC 元件組成 - 6 - 1. 光陽極 (Photo-electrode) - 7 - 2. 電解液 (Electrolyte) - 13 - 3. 對電極 (Counter electrode) - 18 - 4. 量測可靠度 (Reliable evaluation) - 18 - 第四節、DSSC 染料發展 - 24 - 1. 雙牙配位基釕金屬錯合物 - 26 - 2. 三牙配位基釕金屬錯合物 - 33 - 3. 鋨金屬錯合物 - 39 - 第五節、DSSC元件光電參數 - 42 - 1. 基本光電性質 - 42 - 2. 電子在TiO2的傳輸及復合 - 46 - 3. 染料藉電解液的再生與還原 - 47 - 第六節、研究動機 - 48 - 第二章、分析儀器與實驗步驟 - 52 - 第一節、分析儀器 - 52 - 1. 核磁共振光譜 (Nuclear Magnetic Resonance, NMR) - 52 - 2. 質譜分析 (Mass Spectrometer, MS) - 52 - 3. 元素組成分析 (Elemental Analysis, EA) - 53 - 4. 紫外-可見光光譜儀 (Ultraviolet-Visible Spectrometer, UV-Vis) - 53 - 5. 螢光光譜儀 (Fluorescence Spectrophotometer, PL) - 53 - 6. 循環伏安法 (Cyclic Voltammeter, CV) - 53 - 7. 理論計算方法 (Theoretical Calculations) - 54 - 第二節、染料敏化太陽能電池元件製作與性質量測 - 55 - 2-1 染料敏化太陽能電池元件製作 - 55 - 1. TiO2奈米粉體及其漿料製備 - 55 - 2. 光陽極 - 55 - 3. Pt對電極 - 56 - 4. 電解質: - 56 - 5. 元件組裝 - 56 - 2-2 染料敏化太陽能電池元件光電性質量測 - 58 - 1. 電流-電壓曲線量測 (I-V Curve Measurement) - 58 - 2. 入射光電轉化效率 (IPCE Measurement) - 58 - 3. 電化學交流阻抗分析儀 (EIS) - 58 - 4. 瞬態光電壓電流值量測 (TPC/TPV Measurement) - 58 - 第三章、結果與討論 - 60 - 第一部分、雙牙配位基釕金屬錯合物 - 60 - 第一節、大立障官能團之修飾 - 60 - 1. 染料TFRS-52與TFRS-55~58開發策略 - 60 - 2. 染料TFRS-52與TFRS-55~58的光物理性質 - 62 - 3. 染料TFRS-52與TFRS-55~58電化學性質與能階圖 - 63 - 4. 染料TFRS-52與TFRS-55~58立體結構解析 - 65 - 5. 染料 TFRS-52與TFRS-55~58元件製備與探討 - 67 - 第二節、2-hexythienyl 官能團之修飾 - 73 - 1. 染料 1a ~ 1e 開發策略 - 73 - 2. 染料1a ~ 1f 的光物理性質 - 75 - 3. 染料1a ~ 1e 電化學性質與能階圖 - 78 - 4. 染料 1a ~ 1e 理論計算之立體結構與討論 - 80 - 5. 染料1a ~ 1e元件製備與探討 - 83 - 第三節、diphenylamine與 indoline官基團之修飾 - 89 - 1. 染料 2a ~ 2d 開發策略 - 89 - 2. 染料2a ~ 2d的光物理性質 - 90 - 3. 染料2a ~ 2d電化學性質與能階圖 - 93 - 4. 染料2a ~ 2d理論計算之立體結構與討論 - 96 - 5. 染料2a ~ 2d元件製備與探討 - 98 - 第四節、TCR系列 - 104 - 1. 染料TCR-1與TCR-2系列開發策略 - 104 - 2. 染料TCR-1與TCR-2的光物理性質 - 105 - 3. 染料TCR-1與TCR-2電化學性質與能階圖 - 107 - 4. 染料TCR-1立體結構解析 - 109 - 5. 染料TCR-1與TCR-2元件製備與探討 - 112 - 第二部分、三牙配位基釕金屬錯合物 - 119 - 第一節、TF-30~33 系列 - 119 - 1. 染料 TF-30~33 系列開發策略 - 119 - 2. 染料TF-30~33 的光物理性質 - 121 - 3. 染料TF-30~33 電化學性質與能階圖 - 122 - 4. 染料 TF-31 立體結構解析 - 124 - 5. 染料 TF-30~31 元件製備與探討 - 127 - 6. 染料 TF-32 元件長效穩定性探討 - 135 - 第二節、TF-32a~c 系列 - 137 - 1. 染料 TF-32a~c 系列開發策略 - 137 - 2. 染料TF-32a~c 的光物理性質 - 138 - 3. 染料TF-32a~c 電化學性質與能階圖 - 139 - 4. 染料 TF-32a~c 立體結構與理論計算解析 - 141 - 5. 染料 TF-32a~c 元件製備與探討 - 144 - 第三節、PRT-21~24 系列 - 150 - 1. 染料 PRT-21~24 系列開發策略 - 150 - 2. 染料PRT-21~24的光物理性質 - 152 - 3. 染料PRT-21~24電化學性質與能階圖 - 154 - 4. 染料 PRT-21~24元件製備與探討 - 156 - 5. 染料 PRT-22、24元件長效穩定性探討 - 161 - 第三部分、鋨金屬錯合物 - 163 - 1. 染料 TFOS 系列開發策略 - 163 - 2. 染料TFOS-1~3 的光物理性質 - 165 - 3. 染料TFOS-1~3 電化學性質與能階圖 - 166 - 4. 染料 TFOS-1 單晶結構解析 - 168 - 5. 染料 TFOS-1~3 元件製備與探討 - 171 - 第四章、結論 - 178 - 第五章、參考文獻 - 184 -

    參考文獻
    1. D. M. Chapin, C. S. Fuller and G. L. Pearson, Journal of Applied Physics, 1954, 25, 676.
    2. E. Putzeiko and A. Terenin, Zh. Fiz. Khim., 1949, 23, 676.
    3. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402.
    4. B. O'Regan and M. Grätzel, Nature, 1991, 353, 737.
    5. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, J. Am. Chem. Soc., 2005, 127, 16835.
    6. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, Science, 2011, 334, 629.
    7. B. Gerrit, A. G. Elizabeth and H. Anders, The Journal of Physical Chemistry Letters, 2011, 2.
    8. I. Seigo, N. M. Takurou, C. Pascal, L. Paul, G. Carole, K. N. Mohammad and G. Michael, Thin Solid Films, 2008, 516.
    9. K. Hyung-Jun, P. Jihee, Y. Beomjin, Y. Kicheon, K. Kyoungkon and P. Nam-Gyu, Inorganica Chimica Acta, 2008, 361.
    10. W. Zhong-Sheng, K. Hiroshi, K. Takeo and A. Hironori, Coordination Chemistry Reviews, 2004, 248.
    11. A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski and M. Grätzel, Nano letters, 2008, 8, 977.
    12. I. Seigo, L. Paul, C. Pascal, C. Raphaël, P. Peter, B. Udo, S.-M. Lukas, Z. Shaik Mohammed, K. Andreas, K. N. Mohammad and G. Michael, Chemical Communications, 2005, 4351.
    13. Q. Lai, D. S. Judith and P. B. Dunbar, III, Journal of the American Ceramic Society, 2009, 92.
    14. O. Varghese, M. Paulose and C. Grimes, Nature nanotechnology, 2009, 4, 592.
    15. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595.
    16. S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, The journal of physical chemistry. B, 2005, 109, 3480.
    17. Y. W. Yushuai Shi, Min Zhang and Xiandui Dong, Phys. Chem. Chem. Phys., 2011, 13, 14590.
    18. G. Boschloo, S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun and A. Hagfeldt, J. Am. Chem. Soc., 2010, 132, 16714.
    19. Y. Cao, J. Zhang, Y. Bai, R. Li, S. M. Zakeeruddin, M. Grätzel and P. Wang, The Journal of Physical Chemistry C, 2008, 112, 13775.
    20. Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. Zakeeruddin and M. Grätzel, Nature materials, 2008, 7, 626.
    21. W. Hongxia and M. P. Laurence, The Journal of Physical Chemistry C, 2012, 116.
    22. K. Hitoshi, K. Yoshinari, S. Hideki and A. Hironori, Solar Energy Materials and Solar Cells, 2003, 80.
    23. S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Phys. Chem. B, 2005, 109, 3480.
    24. N. Kopidakis, N. R. Neale and A. J. Frank, The Journal of Physical Chemistry B, 2006, 110, 12485.
    25. M. Lee, J. Teuscher, T. Miyasaka, T. Murakami and H. Snaith, Science (New York, N.Y.), 2012, 338, 643.
    26. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society, 2009, 131, 6050.
    27. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. Nazeeruddin and M. Grätzel, Nature, 2013, 499, 316-319.
    28. M. Edoardo, A. Anna, K. N. Md, G. Michael and A. Filippo De, The Journal of Physical Chemistry C, 2013, 117.
    29. J. S. Henry, The Journal of Physical Chemistry Letters, 2013, 4.
    30. R. Jae Hui, C. Chih-Chun and D. Eric Wei-Guang, NPG Asia Materials, 2013, 5.
    31. M. B. James, M. L. Michael, H. Andrew and J. S. Henry, Energy Environ. Sci.,, 2013, 6.
    32. H. Jin Hyuck, I. Sang Hyuk, N. Jun Hong, N. M. Tarak, L. Choong-Sun, C. Jeong Ah, L. Yong Hui, K. Hi-jung, S. Arpita, K. N. Md, G. Michael and S. Sang Il, Nature Photonics, 2013, 7.
    33. J. Jun-Yuan, C. Yi-Fang, L. Mu-Huan, P. Shin-Rung, G. Tzung-Fang, C. Peter and W. Ten-Chin, SPIE Newsroom, 2013.
    34. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. Moser, M. Grätzel and N.-G. Park, Scientific reports, 2012, 2, 591.
    35. M. Liu, M. Johnston and H. Snaith, Nature, 2013, 501, 395.
    36. P. Nam-Gyu, The Journal of Physical Chemistry Letters, 2013, 4.
    37. S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza and H. Snaith, Science (New York, N.Y.), 2013, 342, 341.
    38. N. Papageorgiou, Journal of The Electrochemical Society, 1997, 144.
    39. T. C. Wei, C. C. Wan and Y. Y. Wang, Applied Physics Letters, 2006, 88.
    40. J.-L. Lan, C.-C. Wan, T.-C. Wei, W.-C. Hsu, C. Peng, Y.-H. Chang and C.-M. Chen, Int. J. Electrochem. Sci, 2011, 6, 1230.
    41. T. C. Wei, C. C. Wan, Y. Y. Wang, C.-m. Chen and H.-s. Shiu, Journal of Physical Chemistry C, 2007, 111.
    42. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Progress in Photovoltaics: Research and Applications, 2012, 20, 12.
    43. Y. Xudong, Y. Masatoshi and H. Liyuan, Energy Environ. Sci.,, 2013, 6.
    44. N. Koide and L. Han, Review of Scientific Instruments, 2004, 75, 2828.
    45. I. Seigo, N. Md. Khaja, L. Paul, C. Pascal, C. Raphaël, P. Péter, J. Marie, K. Andreas, M. Z. Shaik and G. Michael, Progress in Photovoltaics: Research and Applications, 2006, 14.
    46. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Progress in Photovoltaics: Research and Applications, 2011, 19, 565.
    47. S. F. Zhang, X. D. Yang, Y. H. Numata and L. Y. Han, Energy Environ. Sci., 2013, 6, 1443.
    48. A. Islam, H. Sugihara and H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 131.
    49. G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, J. Phys. Chem. B, 2001, 105, 6867.
    50. T. Daeneke, A. J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach and L. Spiccia, J. Am. Chem. Soc., 2012, 134, 16925.
    51. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, J. Am. Chem. Soc., 1993, 115, 6382.
    52. M. Gratzel, Acc. Chem. Res., 2009, 42, 1788.
    53. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.
    54. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Grätzel, Nat Mater, 2003, 2, 402.
    55. P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, Adv. Mater., 2004, 16, 1806.
    56. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2004, 127, 808.
    57. C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen and K.-C. Ho, Angew. Chem. Int. Ed., 2006, 45, 5822.
    58. C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen and K. C. Ho, Adv. Mater. (Weinheim, Ger.), 2007, 19, 3888.
    59. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, ACS nano, 2010, 4, 6032.
    60. F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. Zakeeruddin and M. Grätzel, Chemical communications (Cambridge, England), 2008, 2635.
    61. F. Gao, Y. Cheng, Q. Yu, S. Liu, D. Shi, Y. Li and P. Wang, Inorganic chemistry, 2009, 48, 2664.
    62. S. Dong, P. Nuttapol, L. Renzhi, G. Jin, W. Yuan, M. Z. Shaik, G. t. Michael and W. Peng, Journal of Physical Chemistry C, 2008, 112.
    63. Y. Qingjiang, L. Shi, Z. Min, C. Ning, W. Yuan and W. Peng, The Journal of Physical Chemistry C, 2009, 113.
    64. C. Yiming, B. Yu, Y. Qingjiang, C. Yueming, L. Shi, S. Dong, G. Feifei and W. Peng, The Journal of Physical Chemistry C, 2009, 113.
    65. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. Zakeeruddin and M. Grätzel, Journal of the American Chemical Society, 2008, 130, 10720.
    66. M. Garcia-Iglesias, L. Pelleja, J.-H. Yum, D. Gonzalez-Rodriguez, M. K. Nazeeruddin, M. Gratzel, J. N. Clifford, E. Palomares, P. Vazquez and T. Torres, Chemical Science, 2012, 3, 1177.
    67. S. H. Wadman, J. M. Kroon, K. Bakker, M. Lutz, A. L. Spek, G. P. M. van Klink and G. van Koten, Chemical Communications, 2007, 1907.
    68. T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, J. Am. Chem. Soc., 2009, 131, 5930.
    69. K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu and P.-T. Chou, Chem. Commun., 2010, 46, 5124.
    70. W. Kuan-Lin, K. Wan-Ping, N. C. John, P. Emilio, H. Shu-Te, C. Yun, L. Shih-Hung, C. Pi-Tai, K. N. Mohammad and G. Michael, Energy Environ. Sci.,, 2013, 6.
    71. P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, J. Am. Chem. Soc., 2001, 123, 1613.
    72. K. S. Chen, W. H. Liu, Y. H. Wang, C. H. Lai, P. T. Chou, G. H. Lee, K. Chen, H. Y. Chen, Y. Chi and F. C. Tung, Advanced Functional Materials, 2007, 17, 2964.
    73. K. Chen, Y.-H. Hong, Y. Chi, W.-H. Liu, B.-S. Chen and P.-T. Chou, Journal of Materials Chemistry, 2009, 19, 5329.
    74. B.-S. Chen, K. Chen, Y.-H. Hong, W.-H. Liu, T.-H. Li, C.-H. Lai, P.-T. Chou, Y. Chi and G.-H. Lee, Chemical communications (Cambridge, England), 2009, 5844.
    75. C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, Angew Chem Int Ed Engl, 2011, 50, 2054.
    76. C. W. Hsu, S. T. Ho, K. L. Wu, Y. Chi, S. H. Liu and P. T. Chou, Energy Environ. Sci., 2012, 5, 7549.
    77. R. Argazzi, G. Larramona, C. Contado and C. A. Bignozzi, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 15.
    78. T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, J Phys Chem Lett, 2012, 3, 394.
    79. K.-L. Wu, S.-T. Ho, C.-C. Chou, Y.-C. Chang, H.-A. Pan, Y. Chi and P.-T. Chou, Angew. Chem. Int. Ed., 2012, 51, 5642.
    80. L. M. Goncalves, V. de Zea Bermudez, H. A. Ribeiro and A. M. Mendes, Energy Environ. Sci., 2008, 1, 655.
    81. R. Anna and P. Emilio, European Journal of Inorganic Chemistry, 2011.
    82. J. Bisquert, M. Gratzel, Q. Wang and F. Fabregat-Santiago, J. Phys. Chem. B, 2006, 110, 11284.
    83. A. Solbrand, H. Lindström, H. Rensmo, A. Hagfeldt, S.-E. Lindquist and S. Södergren, The Journal of Physical Chemistry B, 1997, 101, 2514.
    84. J. M. Gardner, J. M. Giaimuccio and G. J. Meyer, Journal of the American Chemical Society, 2008, 130, 17252.
    85. A. Y. Anderson, P. R. F. Barnes, J. R. Durrant and B. C. O’Regan, The Journal of Physical Chemistry C, 2010, 114, 1953.
    86. B. C. O’Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. d. Klein and J. R. Durrant, Journal of the American Chemical Society, 2009, 131, 3541.
    87. K.-L. Wu, C.-H. Li, Y. Chi, J. Clifford, L. Cabau, E. Palomares, Y.-M. Cheng, H.-A. Pan and P.-T. Chou, Journal of the American Chemical Society, 2012, 134, 7488.
    88. J. N. Clifford, E. Martinez-Ferrero and E. Palomares, Journal of Materials Chemistry, 2012, 22, 12415.
    89. B. Juan, F.-S. Francisco, M.-S. Iván, G.-B. Germà, M. B. Eva and P. Emilio, Inorg. Chim. Acta, 2008, 361.
    90. 清大材料系汪于仕同學碩士論文, Photophysical Properties of Dye-sensitized Solar Cells.
    91. A. Y. Anderson, P. R. F. Barnes, J. R. Durrant and B. C. O'Regan, J. Phys. Chem. C, 2010, 114, 1953.
    92. B. C. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling and J. R. Durrant, J. Phys. Chem. B, 2006, 110, 17155.
    93. Y. Numata, A. Islam, H. Chen and L. Han, Energy Environ. Sci.,, 2012, 5, 8548.
    94. H.-W. Lin, Y.-S. Wang, Z.-Y. Huang, Y.-M. Lin, C.-W. Chen, S.-H. Yang, K.-L. Wu, Y. Chi, S.-H. Liu and P.-T. Chou, Phys. Chem. Chem. Phys., 2012, 14, 14190.
    95. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, Journal of the American Chemical Society, 2005, 127, 3456.
    96. S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, The Journal of Physical Chemistry B, 2005, 109, 3480.
    97. H. Wang and L. M. Peter, The Journal of Physical Chemistry C, 2012, 116, 10468.
    98. S.-H. Liu, H. Fu, Y.-M. Cheng, K.-L. Wu, S.-T. Ho, Y. Chi and P.-T. Chou, The Journal of Physical Chemistry C, 2012, 116, 16338.
    99. S.-H. Yang, K.-L. Wu, Y. Chi, Y.-M. Cheng and P.-T. Chou, Angewandte Chemie (International ed. in English), 2011, 50, 8270.
    100. H. Ozawa, M. Awa, T. Ono and H. Arakawa, Chemistry, an Asian journal, 2012, 7, 156.
    101. T. Kinoshita, J.-i. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, The Journal of Physical Chemistry Letters, 2012, 3, 394.
    102. C. Ning, Z. Jing, X. Mingfei, Z. Min and W. Peng, Advanced Functional Materials, 2013, 23.
    103. K. Ryuzi, K. Motohiro, K. Satoshi, F. Akihiro, F. Nobuhiro and K. Naoki, The Journal of Physical Chemistry C, 2009, 113.
    104. F. Sauvage, S. Chhor, A. Marchioro, J.-E. Moser and M. Graetzel, Journal of the American Chemical Society, 2011, 133, 13103.
    105. W. Sheng-Wei, W. Kuan-Lin, G. Elham, L. Maria Grazia, H. Shu-Te, C. Yun, E. M. Jacques, A. Filippo De, G. Michael and K. N. Mohammad, Chemical Science, 2013, 4.
    106. Y. Hsiu-Hsuan, H. Shu-Te, C. Yun, N. C. John, P. Emilio, L. Shih-Hung and C. Pi-Tai, Journal of Materials Chemistry A, 2013, 1.
    107. J. R. Jennings, Y. Liu and Q. Wang, The Journal of Physical Chemistry C, 2011, 115, 15109.
    108. A. C. Onicha and F. N. Castellano, The Journal of Physical Chemistry C, 2010, 114, 6831.
    109. H. Chien-Wei, H. Shu-Te, W. Kuan-Lin, C. Yun, L. Shih-Hung and C. Pi-Tai, Energy Environ. Sci.,, 2012, 5.
    110. H. Kusama and H. Sugihara, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 268.
    111. H. Kusama, M. Kurashige and H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 169.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE