簡易檢索 / 詳目顯示

研究生: 王雅雲
Ya-yun Wang
論文名稱: 強韌避險策略:從模擬到實證研究
Robust Hedging Strategies:From Simulations to Empirical Studies
指導教授: 韓傳祥
Chuan-Hsiang Han
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 99
中文關鍵詞: 避險蒙地卡羅模擬
外文關鍵詞: Hedging Strategy, Monte-Carlo simulation, Delta hedge, TXO, SPX
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在複雜的財務模型中,我們要對不同衍生性金融商品定價,使用蒙地卡羅模擬法是很重要的一個計算工具。控制變異法是普遍拿來做變異數風險減輕的一種常用方法。我們進階衍生出另一種Martingale鞅控制變異法。它適合用來處理不同的避險策略和建立避險投資組合價值的過程。實證結果發現此種Martingale控制變異法對於相對應的避險策略反映出很有效的改善和影響力。
    根據這些模擬的實驗結果,我們提出一個不論市場為任何一種模型下,皆適用的避險策略,來做為實證研究分析的方法。當Delta避險策略趨近極限時,會逼近相當於一個Stop-Loss停損策略。而我們再加以調整此停損策略,使其為一強韌避險策略。此時,不論是在台灣或是美國市場,也不論是在高、中、低波動率的市場下,皆有明顯效用。尤其它在高波動率和低波動率市場中,更有顯著的改善能力。


    To compute option prices under complex models, Monte Carlo simulation is an important mechanism. Martingale control variate methods are useful for variance reduction. They are suitable to cope with various hedging strategies in order to construct the value of hedging portfolio processes. As a result, the variance reduced from a martingale control variate method reflects the effectiveness of corresponding hedging strategy.
    Based on these simulating experiences, we propose a model-free hedging strategy for empirical studies. As a limiting delta hedging ratio, the strategy is essentially a stop-loss strategy. Our empirical study documents that this strategy is robust under scenarios of high/middle/low volatility in Taiwan or American equity markets and it works particularly well in high and low volatility environments.

    1.Introduction 2.Stochastic Financial Modelling 2.1 Jump Process: Compound Poisson Jumps 2.2 Jump-Diffusion Process 2.3 Stochastic Volatility Process 2.3.1 The Heston Model: One Factor Model 2.4 Stochastic Volatility Jump-Diffusion Process 3.Pricing Contingent Claims 3.1 Jump Process Model 3.2 Jump-Diffusion Process Model 3.3 Stochastic Volatility Process Model 4.Variance Reduction Methods 4.1 Monte Carlo Simulations 4.1.1 Option Pricing by Simulation 4.2 Review of Control Variate Method 4.3 Martingale Control Variate Method: Pricing by Hedging 4.3.1 Motivation 4.3.2 Hedging Strategies under Different Models 5.Numerical Results 5.1 Jump Model 5.2 Diffusion Model 5.3 Jump-Diffusion Model 5.4 Stochastic Volatility Model 5.5 Stochastic Volatility Jump Diffusion Model 5.6 Hedging Option with Short Maturity 6.Empirical Studies 6.1 Trading Strategies 6.2 Hedging Performance under Market Scenarios 6.2.1 Scenario I : Up Trend of TXO 6.2.2 Scenario II : Up Trend of SPX 6.2.3 Scenario III : Down Trend of TXO 6.2.4 Scenario IV : Down Trend of SPX 6.2.5 Scenario V : Flat Trend of TXO 6.2.6 Scenario VI : Flat Trend of SPX 6.3 Summary 7.Conclusions & Future works Appendix A Appendix B References

    [1] Chiarella, Carl ,Schlogl, Erik and Christina Niktipoulos Sklibosios (September 2005), “A Control Variate Method For Monte Carlo Simulations of Heath-Jarrow-Morton Models with Jumps” University of Technology, Sydney - School of Finance and Economics,Faculty of Business, Quantitative Finance Research Centre Research Paper Number No. 167
    [2] Damien Lamberton and Bernard Lapeyre, “Introduction to Stochastic Calculus Applied to Finance”, 1996
    [3] Darrell Duffie, Jun Pan, and Kenneth Singleton, “Transform Analysis and Asset Pricing for Affine Jump-Diffusions, 2000
    [4] Fouque, Jean-Pierre and Han, Chuan-Hsiang (2006), ”A Martingale Control Variate Method For Option Pricing With Stochastic Volatility”
    [5] Fouque, Jean-Pierre and Han, Chuan-Hsiang, “A Control Variate Method to Evaluate Option Prices under Multi-Factor Stochastic Volatility Models,” submitted, 2004.
    [6] Fouque, Jean-Pierre and Han, Chuan-Hsiang, “Variance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-factor Stochastic Volatility Models,”Quantitative Finance 4(5), October 2004 (597-606).
    [7] Fouque, Jean-Pierre, Papanicolaou, G., and Sircar, R., “Derivatives in Financial Markets with Stochastic Volatility,” Cambridge University Press, 2000.
    [8] Heston, S. (1993), “A Closed-Form Solution for Options with Stochastic Volatility,”Review of Financial Studies, pp. 327-344.
    [9] Javier F. Navas (2000), “On Jump-Diffusion Processes for Asset Returns”
    [10] John C. Hull (2006), “Options, Futures, and Other Derivatives”
    [11] Paul. Glasserman, “Monte Carlo Methods in Financial Engineering,” Springer Verlag,2003.
    [12] Pan, Jun, “The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-Series Study”, 2002
    [13] Rama Cont and Peter Tankov, “Financial Modelling With Jump Processes”, CHAPMAN & HALL/CRC, 2004
    [14] Steven E. Shreve, “Stochastic Calculus for Finance”, Springer Finance, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE