簡易檢索 / 詳目顯示

研究生: 趙威丞
Chao, Wei-Cheng
論文名稱: 以類神經網路還原重疊關聯成像之頻譜相位資訊
Ptychographic Spectral Phase Retrieval by Neural Networks
指導教授: 楊尚達
Yang, Shang-Da
口試委員: 陳明彰
Chen, Ming-Chang
林元堯
Lin, Yuan-Yao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 65
中文關鍵詞: 超快光學類神經網路重疊關聯成像超短脈衝量測相位還原演算法頻率解析光閘
外文關鍵詞: Ultrafast optics, Artificial neural network, Ptychography, Ultrashort pulse measurement, phase retrieval algorithm, frequency-resolved optical gating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頻率解析光閘法(frequency-resolved optical gating, FROG)是一種廣泛用於超短脈衝雷射的量測方法。實驗上,使用一臂具延遲(delay)的干涉儀進行自我干涉,記錄延遲長度對應的頻譜構成的二維圖像,被稱為FROG trace。傳統上會使用迭代演算法(Iterative algorithm),花費數秒以還原待測脈衝的資訊。在量測超短脈衝的超寬頻譜時,使用FROG會遭遇晶體的頻率響應問題,造成FROG trace在頻率軸上被裁切。以往這種被裁切的FROG trace只有極少數迭代演算法才能完成相位還原,並且有所限制。
    本研究建立了一個基於卷積神經網路(Convolutional Neural Networks, CNN)的演算法,能夠以毫秒級的計算時間得到足夠可靠的脈衝資訊。亦能成功達成裁切FROG trace的相位還原,並得到與迭代演算法相比更好的統計結果。因此,此方法對於超寬光譜之脈衝的即時量測與監控提供了基礎。


    Frequency-resolved optical gating (FROG) is a common mothed for retrieving the complex field of ultrashort pulse from experimentally taken spectrogram (i.e. FROG trace). Traditionally, a FROG trace is processed by some iterative algorithm(s), and takes several seconds to arrive at the solution. FROG trace would be spectrally truncated when the nonlinear crystal failed to provide sufficient phase-matching bandwidth particularly in supercontinuum pulse measurement. Only a few algorithms can work with truncated FROG trace, and is somehow limited.
    In this work, we develop a convolution neural network based mothed to retrieve spectral phase from spectrally truncated FROG traces in only few milliseconds, while the pulse reconstruction remains acceptable. This mothed is promising for real-time characterizations of supercontinuum pulses.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 V 一、緒論 1 二、基礎理論與模擬 3 2.1頻率解析光閘(FREQUENCY-RESOLVED OPTICAL GATING, FROG) 3 2.1.1數學模型與實驗架構 3 2.1.2相位重建-主成分投影演算法(principal component generalized projections algorithm, PCGPA) 4 2.1.3相位重建-重疊關聯成像(Ptychography) 7 2.1.4非完整取樣之成因與重建限制 8 2.2 脈衝庫建立 9 2.2.1 模擬脈衝生成 10 2.2.2 脈衝相位生成 11 2.2.3 複數脈衝生成 13 2.3脈衝庫之多樣性分析 14 2.3.1脈衝庫之複雜度分析 14 2.3.2脈衝庫之差異度分析 15 2.3.3脈衝庫之統計分布 16 2.3.4脈衝庫之時域差異度分析 17 2.4基於二倍頻之SHG-FROG圖樣生成 20 2.5脈衝相位還原正確性之評估 21 2.6窗口縮放(SCALING)之可行性討論 21 三、研究方法 22 3.1類神經網路簡談 22 3.1.1發展與應用 22 3.1.2類神經網路與迭代演算法之優劣勢分析 22 3.2類神經網路結構 23 3.2.1類神經元設計 23 3.2.2損失函數(loss function)設計與矩陣化 25 3.2.3神經網路結構選擇 28 3.2.3.1 DNN 深度神經網路結構 28 3.2.3.2 CNN 卷積神經網路結構 28 3.2.4反向傳播(Back propagation) 演算法 30 3.2.5神經權重與激勵函數 33 3.2.6最佳化器(Optimizer) 35 3.2.7訓練集(train)、驗證集(validation)與測試集(test) 37 3.2.8殘差神經網路(ResNet) 39 3.2.9類神經網路設計 41 3.3訓練軟硬體之取捨 43 3.3.1解析度與傅立葉轉換 43 3.3.2深度學習資料庫選擇 44 3.3.3使用中央處理器(CPU)及圖形處理器(GPU)進行計算的差異 45 四、研究成果 46 4.1原始脈衝的頻譜破碎程度對還原成功率之影響 46 4.2相位追回演算法對各頻譜裁切條件之相位還原比較 47 4.2.1 PCGPA演算法對各裁切條件之相位還原統計 48 4.2.2 Ptychography演算法對各裁切條件之相位還原統計 49 4.2.3類神經網路演算法對各裁切條件之相位還原統計 53 4.2.4三種演算法之抗噪性討論 57 4.2.5類神經網路演算法之訓練時間 59 4.2.6一個完整實驗案例討論 61 五、結論與未來展望 63 參考文獻 65

    [1] K. W. DeLong, R. Trebino, J. Hunter, W. E. White, “Frequency-resolved optical gating using second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
    [2] Kane, Daniel J., et al. "Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot." JOSA B 14.4 (1997): 935-943.
    [3] P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness,” Optica 3, 1320–1330 (2016).
    [4] Rodenburg JM, Faulkner HM (15 November 2004). "A phase retrieval algorithm for shifting illumination". Applied Physics Letters. 85 (20): 4795–4797. Bibcode:2004ApPhL..85.4795R
    [5] McCulloch, Warren S.; Pitts, Walter. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics. 1943-12-01, 5 (4): 115–133
    [6] Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974
    [7] Hawkins, Douglas M. "The problem of overfitting." Journal of chemical information and computer sciences 44.1 (2004): 1-12.
    [8] Hopfield, "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences of the USA, vol. 79 no. 8 pp. 2554–2558, April 1982.
    [9] Broomhead, D. S.; Lowe, David (1988). "Multivariable functional interpolation and adaptive networks". Complex Systems. 2: 321–355.
    [10] Huber, Peter J. (1964). "Robust Estimation of a Location Parameter". Annals of Statistics. 53 (1): 73–101.
    [11] Nebauer, C.: Evaluation of convolutional neural networks for visual recognition.
    Neural Networks, IEEE Transactions on 9(4), 685–696 (1998)
    [12] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep sparse rectifier neural networks." Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 201
    [13] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." Proc. icml. Vol. 30. No. 1. 2013.
    [14] Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint arXiv:1505.00853 (2015).
    [15] Hinton, Geoffrey; Deng, Li; Deng, Li; Yu, Dong; Dahl, George; Mohamed, Abdel-rahman; Jaitly, Navdeep; Senior, Andrew; Vanhoucke, Vincent; Nguyen, Patrick; Sainath, Tara; Kingsbury, Brian (2012). "Deep Neural Networks for Acoustic Modeling in Speech Recognition". IEEE Signal Processing Magazine. 29 (6): 82–97.
    [16] Léon Bottou: Online Algorithms and Stochastic Approximations, Online Learning and Neural Networks, Edited by David Saad, Cambridge University Press, Cambridge, UK, 1998.
    [17] J Duchi, E Hazan, Y Singer; Adaptive subgradient methods for online learning and stochastic optimization., Journal of machine learning research, 2011
    [18] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks : the official journal of the International Neural Network Society, 12(1):145–151, 1999
    [19] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv:1412.6980 (2015).
    [20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778
    [21] T. Zahavy, A. Dikopoltsev, D. Moss, G. I. Haham, O. Cohen, S. Mannor, and M. Segev, “Deep learning reconstruction of ultrashort pulses,” Optica 5, 666–673 (2018).

    QR CODE