研究生: |
楊愷盈 Yeo, Kai-Ying |
---|---|
論文名稱: |
孔口補償式液靜壓軸頸軸承的靜態與動態特性 The Static and Dynamic Characteristic of Orifice-compensated Hydrostatic Journal Bearing |
指導教授: |
林士傑
Lin, Shih-Chieh |
口試委員: |
宋震國
Sung, Cheng-Kuo 賴泰華 Lai, Ta-Hua |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 液靜壓軸頸軸承 、靜態性能 、動態性能 |
外文關鍵詞: | Hydrostatic journal bearing, static performance, dynamic performance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在於分析液靜壓軸頸軸承的靜態與動態性能之表現。於軸承靜態性能表現中,利用有限差分法模擬軸承流膜的壓力分佈,並透過壓力分佈,預估軸承的承載力、剛性及流量。模擬分析後,本研究透過靜態負載測試,驗證模擬之可行性。
於動態性能中,為透過實驗測試的方式,了解軸承之自然頻率及其動剛性表現。本研究所使用的動態性能測試方式為使用衝擊鎚對軸承系統施加脈衝力,並透過軸承於各頻率下的位移響應及所施加之脈衝力,分析軸承於各頻率下的剛性及阻尼表現。
The purpose of this research is to analyze the static and dynamic characteristic of hydrostatic journal bearings. In the static performance of the bearing, the finite difference method is used to simulate the fluid film pressure distribution of the bearing, and through the pressure distribution, the bearing load capacity, static stiffness and flow rate of the bearing are estimated. After the simulation analysis, this study verified the feasibility of the simulation through experiment.
In the dynamic performance, to understand the natural frequency of the bearing and its dynamic rigidity performance through experimental testing. The dynamic performance test method used in this research is using an impact hammer to apply impulse force to the bearing system and analyze the stiffness and damping performance of the bearing at each frequency through the displacement response of the bearing at each frequency and the applied impulse force.
[1] Cheng, K., & Rowe, W. B. (1995). A selection strategy for the design of externally pressurized journal bearings. Tribology International, 28(7), 465-474.
[2] Ghosh, M. K., & Majumdar, B. C. (1980). Design of multirecess hydrostatic oil journal bearings. Tribology international, 13(2), 73-78.
[3] Rowe, W.B., Hydrostatic, aerostatic and hybrid bearing design. 2012: Elsevier.
[4] Malanoski, S. B., & Loeb, A. M. (1961). The effect of the method of compensation on hydrostatic bearing stiffness.
[5] Majumdar, B. C., & Mukherjee, J. P. (1972). Multi-recess hydrostatic oil journal bearings with cyclic squeeze. Wear, 19(4), 425-438.
[6] Majumdar, B. C. (1969). The numerical solution of hydrostatic oil journal bearings with several supply ports. Wear, 14(6), 389-396.
[7] O'Donoghue, J. P., Hooke, C. J., & Rowe, W. B. (1970). A Solution Using the Superposition Technique for Externally Pressurized Multi-Recess Journal Bearings Including Hydrodynamic Effects. Proceedings of the Institution of Mechanical Engineers, 185(1), 57-61.
[8] O'Donoghue, J. P., Rowe, W. B., & Hooke, C. J. (1969). Design of hydrostatic bearings using an operating parameter. Wear, 14(5), 355-362.
[9] Dimond, T. W., Sheth, P. N., Allaire, P. E., & He, M. (2009). Identification methods and test results for tilting pad and fixed geometry journal bearing dynamic coefficients–A review. Shock and vibration, 16(1), 13-43.
[10] Kurtin, K. A., Childs, D., San Andres, L., & Hale, K. (1993). Experimental versus theoretical characteristics of a high-speed hybrid (combination hydrostatic and hydrodynamic) bearing.
[11] Rouvas, C., & Childs, D. W. (1993). A parameter identification method for the rotordynamic coefficients of a high reynolds number hydrostatic bearing.
[12] Childs, D., & Hale, K. (1994). A test apparatus and facility to identify the rotordynamic coefficients of high-speed hydrostatic bearings.
[13] San Andre´ s, L., & De Santiago, O. (2004). Forced response of a squeeze film damper and identification of force coefficients from large orbital motions. J. Trib., 126(2), 292-300.
[14] Nordmann, R. (1984). Identification of stiffness and damping coefficients of journal bearings by means of the impact method. In Dynamics of Rotors (pp. 395-409). Springer, Vienna.
[15] Jialei, D. U., & Liang, G. (2020). Dynamic coefficients and stability analysis of a water-lubricated hydrostatic bearing by solving the uncoupled Reynolds equation. Chinese Journal of Aeronautics, 33(8), 2110-2122.
[16] De Santiago, O. C., & Andrés, L. S. (2007). Field methods for identification of bearing support parameters—part I: Identification from transient rotor dynamic response due to impacts.
[17] San Andre´ s, L., & De Santiago, O. C. (2004, January). Identification of bearing force coefficients from measurements of imbalance response of a flexible rotor. In Turbo Expo: Power for Land, Sea, and Air (Vol. 41677, pp. 843-850).
[18] Rowe, W. B., Koshal, D., & Stout, K. J. (1977). Investigation of recessed hydrostatic and slot-entry journal bearings for hybrid hydrodynamic and hydrostatic operation. Wear, 43(1), 55-69.
[19] Kulhanek, C. D. (2012). Dynamic and Static Characteristics of a Rocker-Pivot, Tilting-Pad Bearing with 50% and 60% Offsets (Doctoral dissertation, Texas A & M University).
[20] Stachowiak, G., & Batchelor, A. W. (2013). Engineering tribology. Butterworth-Heinemann.
[21] Hori, Y. (2006). Hydrodynamic lubrication. Springer Science & Business Media.
[22] Miller, R. W. (1983). Flow measurement engineering handbook.
[23] Bently, D. E., & Hatch'Charles, T. (2003). Fundamentals of rotating machinery diagnostics. Mechanical Engineering-CIME, 125(12), 53-54.