簡易檢索 / 詳目顯示

研究生: 曾文宏
Tseng, Wen-Hung
論文名稱: 微波與光時間傳送技術及其在光電震盪器上的應用
Microwave and Optical Time Transfer Techniques and their Applications on Optoelectronic Oscillators
指導教授: 馮開明
Feng, Kai-Ming
口試委員: 鄭木海
賴暎杰
馮開明
邱奕鵬
林凡異
楊尚達
黃承彬
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 115
中文關鍵詞: 時間頻率光纖傳時衛星雙向傳時光電震盪器原子鐘衛星全球定衛系統
外文關鍵詞: time, frequency, time transfer over optical fiber, two-way satellite time and frequency transfer, optoelectronic oscillator, atomic clock, satellite, GPS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的在研究精準的時間傳送技術,並將此技術延伸到光電震盪器的研發上。對於微波領域的時間傳送技術而言,衛星雙向傳時是目前國際上用來長距離精準比對時間與頻率標準的主要技術之一,本論文提出兩種新方法來提升衛星雙向傳時的精度。其一為利用衛星雙向傳時網絡上的大量比對數據來改善單一鏈路短期穩定度的方法,透過亞太地區衛星雙向傳時比對數據的分析,我們展示此方法可以改善氫原子鐘傳時比對的短期穩定度平均達22%,以日本情報通信研究機構(NICT)與台灣電信研究所(TL)的例行氫原子比對鏈路為例,在1小時平均時間的時間不穩定度從91皮秒(ps, 10^-12 s)降到72皮秒以下。另一項研究,目的不僅是要進一步提升衛星雙向傳時的精度並朝更有效利用衛星頻寬而設計,我們與日本情報通信研究機構合作利用軟體無線電系統的技術,產生雙虛擬電碼的展頻信號,來進行新式的衛星雙向傳時比對。首次跨國長距離的比對實驗進行了半年,數據顯示其短期穩定度優於國際度量衡局(BIPM)所計算的GPS 精密單點定位(Precise Point Positioning, PPP)技術結果,長期穩定度則與例行的衛星雙向傳時結果一致;分析從1秒到1天(即86400秒)所有平均時間的時間穩定度,此技術皆可優於75皮秒,這是國際上一個新的紀錄。由於雙虛擬電碼租用兩個分開20 MHz頻寬距離僅佔200 kHz的衛星頻道,此兩個窄的頻道物理上即可達到與20 MHz頻寬信號的相同精度,節省了昂貴的衛星租用費,故此方法已成為國際上高度重視的衛星雙向傳時新一代技術。
    相較於微波領域對於頻寬的限制,利用光纖來傳遞時間信號已成為高精度傳時的發展趨勢。於是我們以共同路徑的光纖鏈路進行雙向傳時比對實驗,結果顯示25公里光纖傳送路徑受環境因素影響的時間延遲變化達2奈秒(ns, 10^-9 s),透過雙向傳時方式消去後殘餘的峰值變化量僅有83皮秒,我們進一步分析這些殘餘的變化主要是兩端傳時設備沒有完美同步到參考信號所造成。由於共同路徑的光纖鏈路具有高度的對稱性,此系統傳時穩定度可優於7皮秒;而平均時間10^5 秒的頻率穩定度可達1.9×10^-16。
    延伸微波及光傳時技術的研究,我們提出將時間傳送技術延伸應用到光電震盪器的研發上。光電震盪器是利用混合光路與微波元件的方式,來產生超低相位雜訊的高頻信號源;在這個前沿的研究課題中,多數的團隊都致力於降低相位雜訊的研究,少有針對長期穩定度的研究。鑒於典型光電震盪器採用長距離光纖扮演共振迴路,以達到高品質因子(Q-factor)的目的,我們提出利用傳時技術的展頻調變方式產生監控信號注入震盪器,可用於監測並穩定光纖共振迴路的用途上。相位雜訊的量測證實注入的監測信號並不會對震盪信號產生干擾;透過長期的光纖時延監測及震盪器頻率量測數據,本論文驗證該方法的理論基礎,及討論延伸的改善方法。論文的最後,針對光電震盪器參考信號注入式鎖定的特性進行研究,藉由監測光纖的時延,我們指出此注入式鎖定的光電震盪器的相位與其參考信號會因光纖時延的長期變動而改變,此現象不僅會劣化光電震盪器的特性,並可能導致失鎖。本論文提出利用監控光纖時延來穩定震盪器相位的方法,具有此功能的震盪器可望作為原子頻率標準的本地震盪器,實現10^-15等級頻率穩定度的原子鐘。
    本論文的研究,對於微波領域的時間傳送技術及光電震盪器的發展上,都有開拓性的貢獻。


    In this dissertation, we study the precise time transfer techniques and extend their applications into the study of optoelectronic oscillators. In the microwave domain, two-way satellite time and frequency transfer (TWSTFT) is one of the main techniques used to compare atomic time scales over long distances. As more and more TWSTFT measurements have been performed, the large number of point-to-point two-way time transfer links has grown to be a complex network. For future improvement of the TWSTFT performance, it is important to reduce measurement noise of the TWSTFT results. One method is using TWSTFT network time transfer. We propose a feasible method to improve the short-term stability by combining the direct and indirect links in the network. Through the comparisons of time deviation (TDEV), the results of network time transfer exhibit clear improved short-term stabilities. For the links used to compare 2 hydrogen masers, the average gain of TDEV at averaging times of 1 hour is 22%. As TWSTFT short-term stability can be improved by network time transfer, the network may allow a larger number of simultaneously transmitting stations. In the other work, to both improve the precision of TWSTFT and decrease the satellite link fee, a new software-defined modem with dual pseudo-random noise (DPN) codes has been developed. We demonstrate the first international DPN-based TWSTFT experiment over a period of 6 months. The results of DPN exhibit excellent performance, which is competitive with the Global Positioning System (GPS) precise point positioning (PPP) technique in the short-term and consistent with the conventional TWSTFT in the long-term. Time deviations of less than 75 ps (ps, 10^-12 s) are achieved for averaging times from 1 s to 1 day (i.e., 86400 s). Because the DPN-based system has advantages of higher precision and lower bandwidth cost, it is one of the most promising methods to improve international time-transfer links.
    Because there is no bandwidth limit in an optical fiber link, a new trend is to perform the time transfer through the optical fiber link. Hence, we present a two-way time transfer experiment through a 25 km optical fiber link. The fiber link, which is constructed to a common-path configuration, is used to replace the satellite link. The resulting data exhibits the time deviation of less than 7 ps at one-day averaging time. The frequency stability on the order of 1.9×10^-16 at 10^5 s has been demonstrated.
    In the final part of this dissertation, we point that the time transfer techniques are useful for the study of optoelectronic oscillators (OEOs). Based on optical fiber loops to act as a high-Q cavity, the OEOs are capable of generating stable radio-frequencies (RF). The long-term frequency stability of the OEO is then limited by the cavity variation that is mainly induced by temperature sensitivity of the optical fiber. In order to actively stabilize the OEO cavity, we employ the technique of RF transfer over optical fibers. We propose and experimentally demonstrate a dual-loop-OEO scheme to enhance the long-term stability with an injected probe signal to monitor the phase variation in the fiber loops. The experimental results show that the resulting spread-spectrum signal is useful in monitoring the fiber delay without observable interference. The relationships between the measured frequency and the monitored delay are theoretically and numerically discussed. We also estimate the long-term stability of the proposed OEO scheme with the cavity phase correction. The corrected result shows the long-term frequency stability of the proposed OEO is within 8.4×10^−8 at one day. Finally, we study the impact of fiber delay fluctuation on reference injection-locked OEOs. We demonstrate that the phase shift of a reference injection-locked OEO varies as the change of its fiber delay over a long period of time. The variation of the fiber delay is monitored using an injected probe signal and is compared with the phase shift. With actively stabilized fiber delays according to the monitored data, the long-term frequency stability of the reference injection-locked OEO is evaluated. In future progression, to act as a local oscillator for an atomic clock, a tunable OEO can generate an oscillation frequency corresponding to the desired atomic transition without the use of a synthesizer.

    Contents 摘要 v ABSTRACT vii 誌謝 ix Acknowledgment x Chapter 1 Overview 1 1.1 Time and frequency standard for science 2 1.2 Time and frequency measurements 3 1.2.1 Quantitative characterization 3 1.2.2 Time difference method 7 1.2.3 Two-way time transfer 8 1.3 Two-way satellite time and frequency transfer 10 1.3.1 Brief history 10 1.3.2 Basic principle of TWSTFT 10 1.3.3 Non-reciprocity terms 12 1.4 Time and frequency transfer via optical fibers 16 1.5 Optoelectronic oscillators 18 1.6 Dissertation organization 20 Chapter 2 Improving short-term stability of two-way satellite time and frequency transfer by network data 22 2.1 Introduction 22 2.2 Theoretical background 23 2.3 Data analysis 26 2.4 Method 29 2.4.1 Treatment of closure errors and the missing data 29 2.4.2 Weighting strategy 30 2.4.3 Higher order networks 30 2.4.4 Results of network time transfer 31 2.5 Conclusion 34 Chapter 3 First international TWSTFT experiment by employing dual pseudo-random noise codes 36 3.1 Introduction 36 3.2 DPN-based TWSTFT experiment 37 3.2.1 DPN Systems 38 3.2.2 DPN experiments 40 3.2.3 Initial experiments and improvements 41 3.3 Results 42 3.4 Discussions 46 3.4.1 Internal delays of DPN systems 46 3.4.2 Outliers 47 3.4.3 Diurnals and non-reciprocity instabilities 48 3.5 Conclusion 49 Chapter 4 Time transfer via optical fiber 51 4.1 Introduction 51 4.2 Common-path optical link 52 4.3 Measurements 53 4.4 Conclusion 57 Chapter 5 Optoelectronic oscillators 59 5.1 Theory 60 5.2 Experiment 63 5.3 Experimental results 66 5.3.1 Influence of the probe signal 66 5.3.2 Temperature sensitivity for delays 67 5.3.3 Frequency versus monitored fiber delay 68 5.4 Discussion 70 5.4.1 Pulling effect by the short loop 70 5.4.2 Performance evaluation of active stabilization on loop delays 72 5.5 Conclusion 73 Chapter 6 Reference injection-locked optoelectronic oscillators 75 6.1 Introduction 75 6.2 Injection locking 76 6.3 Experimental setup 77 6.4 Measurements 78 6.5 Conclusion 83 Chapter 7 Conclusions 84 7.1 Conclusions 84 7.2 Contributions of the dissertation and future plans 87 Bibliography 89 Appendix A. Comparison tables 102 Appendix B. Curriculum vitae 107 Appendix C. List of publications 109

    [1] D. W. Allan, N. Ashby, C. C. Hodge, “The science of timekeeping,” Hewlett Packard (Agilent) application note 1289, (88-pages), 1997.
    [2] E. Peik and A. Bauch, “More Accurate Clocks – What are They Needed for? ” Special Issue/PTB-Mitteilungen 119, no. 2, 2009.
    [3] C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science vol. 329, no. 24, pp. 1630-1633, September 2010.
    [4] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.,104(7), 070802, 2010.
    [5] A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavac, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10-15 uncertainty level,” Metrologia, vol. 43, no. 1, pp. 109–120, Feb. 2006.
    [6] D. Piester, A. Bauch, L. Breakiron, D. Matsakis, B. Blanzano, and O. Koudelka, “Time transfer with nanosecond accuracy for the realization of International Atomic Time,” Metrologia, vol. 45, no. 2, pp. 185–198, Apr. 2008.
    [7] Bruce Warrington, "Two atomic clocks ticking as one," Science 336, 421, 2012.
    [8] G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy,” Opt. Lett., vol. 34, pp. 2270-2272, 2009.
    [9] D. Piester and H. Schnatz, “Novel techniques for remote time and frequency comparisons,” Special Issue/PTB-Mitteilungen 119, no. 2. 2009.
    [10] M. A Lombardi, “An introduction to frequency calibrations” (reprinted from NIST Frequency Measurement & Analysis System Operator’s manual), NIST Time and Frequency Division.
    [11] D. A. Howe, D. W. Allan, and J. A. Barnes, Properties of Signal Sources and Measurement Methods, Proceedings of the 35th Annual Frequency Control Symposium, 1981.
    [12] Standard definitions of Physical Quantities for Fundamental Frequency and time metrology, IEEE-Std 1189-1988, 1988.
    [13] David W. Allan, “Introduction to time-domain measurement standards,” presentation in NIST 36th Annual Time and Frequency Seminar, 2011.
    [14] User Manual of Stable 32, Hamilton Technical Services, MA 01982 USA.
    [15] V. S. Zhang, “Time and frequency transfer using GPS and two-way with communication satellites,” 36th NIST Time and Frequency Metrology Seminar, June 9, 2011.
    [16] D. W. Hanson, “Fundamentals of two-way time transfer by satellite,” in Proc. 43rd Annual Frequency Control Symposium, 1989, pp. 174-178.
    [17] D. Kirchner, “Two-way time transfer via communication satellites,” Proc. of the IEEE, vol. 79, no. 7, pp. 983–990, Jul. 1991.
    [18] I.T.U. Radio-communication Sector, “The operational use of two-way satellite time and frequency transfer employing PRN codes,” Recommendation ITU-R TF.1153-2, Geneva, 2003.
    [19] NIST web, Time and frequency transfer using the two way method, http://tf.nist.gov/time/twoway.htm.
    [20] Z. Jiang, “Fully use the redundancy in TWSTFT and GNSS time and frequency transfer,” in Proc. of Frequency Control Symposium, 2009 Joint with the 22nd European Frequency and Time forum. IEEE International, pp. 1194 – 1197, 2009.
    [21] M. Imae, M. Hosokawa, K. Imamura, H. Yukawa, Y. Shibuya, N. Kurihara, P. T. H. Fisk, M. A. Lawn, L. Zhigang, L. Huanxin, K. Nakadan, K. Hagimota, “Two-way satellite time and frequency transfer networks in Pacific Rim region,” IEEE Trans. Instrum. Meas., vol. 50, no. 2, pp. 559–562, Apr. 2001.
    [22] M. Imae, T. Gotoh, T. Suzuyama, Y. Shibuya, F. Nakagawa, and R. Tabuchi, “Time transfer modem for TWSTFT developed by CRL,” in Proc. of ATF2002, 5-8 November 2002, Daejeon, Korea, pp. 210-217, 2003.
    [23] T. E. Parker and V. Zhang, “Source of instabilities in two-way satellite time transfer,” in Proc. 2005 Joint IEEE International Frequency Control Symposium (IFCS) and 37th Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2005, pp. 745-751.
    [24] D. Piester, A. Bauch, M. Fujieda, T. Gotoh, M. Aida, H. Maeno, M. Hosokawa, and S. H. Yang,“Studies on instabilities in long-baseline two-way satellite time and frequency transfer (TWSTFT) including a troposphere delay model,” in Proc. of the 39th Precise Time and Time Interval (PTTI) Syst. Appl. Meeting, pp. 211–222, 2007.
    [25] M. Fujieda, H. Maeno, D. Piester, A. Bauch, S.-H. Yang, T. Suzuyama, W.-H. Tseng, H. Li, Y. Gao and J. Achkar, “Impact of the transponder configuration on the Asia-Europe TWSTFT network,” Proc. 2011 Joint IEEE International Frequency Control Symposium & European Frequency and Time Forum, (2011 joint IFCS/EFTF conference, paper 7178), 2-5 May 2011, San Francisco, CA, USA, pp. 655-660, 2011.
    [26] D. W. Allan, M. A. Weiss, and N. Ashby, “Around-the-world relativistic Sagnac experiment,” Science, vol. 228, pp. 69-70, 1985.
    [27] M. Fujieda, T. Gotoh, M. Aida, J. Amagai, H. Maeno, D. Piester, A. Bauch, and S. H. Yang, “Long baseline TWSTFT between Asia and Europe,” in Proc. 38th Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2006, pp. 499-510.
    [28] W.-H. Tseng, K.-M. Feng, S.-Y. Lin, H.-T. Lin, Y.-J. Huang, and C.-S. Liao, “Sagnac effect and diurnal correction on two-way satellite time transfer,” IEEE Trans. Instrum. Meas., vol. 60, no. 7, pp. 2298–2303, Jul. 2011.
    [29] T. E. Parker, V. Zhang, A. McKinley, L. Nelson, J. Rohde, and D. Matsakis, 2003,“Investigation of instabilities in two-way transfer,” in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2003, pp. 381-390.
    [30] G. de Jong, “Accurate delay calibration for two-way time transfer earth stations,” in Proceedings of the 21st Precise Time and Time Interval (PTTI) Applications and Planning Meeting, pp. 107-116, 1989.
    [31] W. H. Tseng, H. T. Lin, P. C. Chang, S. Y. Lin, and K. M. Feng, “Analysis of delay fluctuations in two-way time transfer earth stations,” The 39th Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Long Beach, CA, USA, paper 47, November 2007.
    [32] W.-H. Tseng and S.-Y. Lin, “Earth station delay measurement by SATSIM,” 13th Meeting of the CCTF WG on TWSTFT, 15-16 November, 2005 at NMi VSL, Delft, the Netherlands, 2005.
    [33] Y.-J. Huang, W.-H. Tseng, S.-Y. Lin, H.-T. Lin, F.-D. Chu and C.-S. Liao, “The multiple access interference simulation on PRN-based two-way satellite time transfer,” in Proc. of the 43rd Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Long Beach, California, USA, paper 19, November 14–17, 2011.
    [34] Lute Maleki, “The optoelectronic oscillator,” Nature Photonics, vol. 5, pp. 728–730, 2011.
    [35] L.E. Primas, et al., “Applications of ultra-stable fiber optic distribution systems,” 43rd Annual Symposium on Frequency Control, 1989.
    [36] L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett., vol. 19, pp. 1777-1779, 1994.
    [37] J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B, vol. 20, pp. 1459-1467, 2003.
    [38] F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, Ch. Daussy, A. Amy-Klein, and Ch. Chardonnet, “High resolution frequency standard dissemination via optical fiber metropolitan network”, Review of Scientific Instruments, vol. 77, no. 6, pp. 064701-064701-8, 2006.
    [39] M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett., vol. 34, no. 19, pp. 2949-2951, 2009.
    [40] Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Active propagation delay stabilization for fiber optic frequency distribution using controlled electronic delay lines,” IEEE Trans. Instrum. Meas. vol. 60, no. 4, pp. 1480-1488, 2011.
    [41] C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904, 2005.
    [42] O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B, vol. 98, no. 4, pp. 723-727, 2010.
    [43] H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B, vol. 25, pp. 2029-2035, 2008.
    [44] N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett., vol. 32, pp. 3056-3058, 2007.
    [45] G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy,” Opt. Lett., vol. 34, pp. 2270-2272, 2009.
    [46] M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, "All-optical link for direct comparison of distant optical clocks," Opt. Express, vol. 19, pp. 16498-16507, 2011.
    [47] K. Predeh, G. Groschel, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, H. Schnatz, “A 920-Kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science, vol. 336, no. 6080, pp. 441-444, 27 April, 2012.
    [48] B. Wang, C. Gao, W.L. Chen, J. Miao, Y. Bai, T.C. Li, and L.J. Wang, “Fiber-based time and frequency dissemination between THU and NIM,” 2012 IEEE International Frequency Control Symposium, Paper 179, Baltimore, Maryland, USA, 22-24 May, 2012.
    [49] S. R. Jefferts, Marc A. Weiss, J. Levine, S. Dilla, E. W. Bell, and T. E. Parker, “Two-way time and frequency transfer using optical fibers”, IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 2, pp.209-211, April 1997.
    [50] D. Piester, M. Rost, M. Fujieda, T. Feldmann, and A. Bauch, “Remote atomic clock synchronization via satellites and optical fibers,” Advances in Radio Science, vol. 9, pp. 1-7, 2011.
    [51] M. Rost, M. Fujieda, and D. Piester, “Time transfer through optical fibers (TTTOF): progress on calibrated clock comparisons,” Proc. 24th European Frequency and Time Forum, 13-16 April 2010, Noordwijk, The Netherlands, paper 6.4, 2010.
    [52] P. O. Hedekvist and S.-C. Ebenhag, “Time and frequency transfer in optical fibers”, Chapter 17 in Book: Recent Progress in Optical Fiber Research, January 25, 2012.
    [53] L. Sliwczynski, P. Krehlik and M. Lipinski, “Optical fibers in time and frequency transfer,” Meas. Sci. Technol. Vol. 21 pp. 075302-075312, 2010.
    [54] D. Matsakis, private communication, May, 2012.
    [55] M. Amemiya, M. Imae, Y. Fujii, T. Suzuyama, and S. Ohshima, “Simple time and frequency dissemination method using optical fiber network,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 5, pp. 878-883, 2008.
    [56] S. C. Ebenhag, P. O. Hedekvist and K. Jaldehag, “Active detection of propagation delay variations in single way time transfer utilizing dual wavelengths in an optical fiber network,” in Proceedings of 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), San Fransisco, CA , pp. 1-6, 2011.
    [57] J. Hanssen, S. Crane, and C. Ekstrom, “One-way two-color fiber link for frequency transfer,” 2012 IEEE International Frequency Control Symposium, Paper 177, Baltimore, Maryland, USA, 22-24 May 2012.
    [58] X. S. Yao, L. Maleki, and D. Eliyahu, “Progress in the opto-electronic oscillator - a ten year anniversary review,” in Digest of 2004 IEEE MTT-S International Microwave Symposium, pp. 287-290, 2004.
    [59] X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electronic Letters, vol. 30, pp. 1525, 1994.
    [60] D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in Proc. of 2003 Joint Meeting IEEE International Frequency Control Symposium and 17th European Frequency and Time Forum, pp. 405-410, 2003.
    [61] P. H. Merrer, H. Brahimi, O. Llopis, “Optical techniques for microwave frequency stabilization: resonant versus delay line approaches and related modelling problems”, Proc. of the IEEE Int. Topical Meeting on Microwave Photonics, Gold Coast, Australia, Sept. 2008, pp. 146-149.
    [62] W. Zhou, and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microwave Theory & Tech., 53, no. 3, pp. 929-933, March 2005.
    [63] D. Strekalov, A. Savchenkov, A. Matsko, N. Yu, L. Maleki, “All-optical atomic clock on a chip: progress report,” in Proc. of 2004 IEEE International Frequency Control Symposium, pp. 104-108, 2004.
    [64] L. Maleki, “The optoelectronic oscillator,” Nature Photonics, vol. 5, pp. 728–730, 2011.
    [65] NIST web: http://tf.nist.gov/timefreq/ofm/oscillators/webopto.htm.
    [66] L. Maleki and N. Yu, “Atomic clock based on opto-electronic oscillator,” NASA Tech Briefs, April 2005, pp. 25-26.
    [67] F. Arias, Z. Jiang, W. Lewandowski, and G. Petit, “BIPM comparison of time transfer techniques,” in Proc. 2005 IEEE International Frequency Control Symposium (IFCS) and Exposition, 2005, pp. 312–315.
    [68] D. Piester, A. Bauch, J. Becker, E. Staliuniene, and C. Schlunegger, “On measurement noise in the European TWSTFT network,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, pp. 1906–1912, 2008.
    [69] Z. Jiang and G. Petit, “Redundancy in the TAI TWSTFT time transfer network,” in Proc. 20th European Frequency and Time Forum, 2006, pp. 468–475.
    [70] Z. Jiang, “Towards a TWSTFT network time transfer,” Merologia, vol. 45, pp. 6–11, 2008.
    [71] M. Fujieda, M. Aida, H. Maeno, LQ Tung, and J. Amagai, “Delay difference calibration of TWSTFT earth station using multichannel modem,” IEEE Trans. Instrum. Meas., vol. 56, no. 2, pp. 346–350, Apr. 2007.
    [72] W. Tseng, S. Lin, and K. Feng, “Analysis of the Asia-Pacific TWSTFT network,” in Proc. 2008 IEEE International Frequency Control Symposium (IFCS) and Exposition, 2008, pp. 487–492.
    [73] D. Matsakis, L. Breakiron, A. Bauch, D. Piester, and Z. Jiang, “Two-way satellite time and frequency transfer (TWSTFT) calibration constancy from closure sums,” Proc. 40th Precise Time and Time Interval (PTTI) Meeting, pp. 587–604, 2008.
    [74] A. Bauch, D. Piester, M. Fujieda, and W. Lewandowski, “Directive for operational use and data handling in two-way satellite time and frequency transfer (TWSTFT),” Rapport BIPM, 25 pp., Jan. 2011.
    [75] W.-H. Tseng, S.-Y. Lin, K.-M. Feng, M. Fujieda and H. Maeno, “Improving TWSTFT short-term stability by network time transfer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 1, pp. 161–167, Jan. 2010.
    [76] G. Petit and Z. Jiang, “Precise point positioning for TAI computation,” Int. J. Navig. Obs., vol. 2008, id. 562878, 8 pp., 2008.
    [77] BIPM Circular T 261, in BIPM ftp publications, Oct., 2009.
    [78] Z. Jiang and G. Petit, “Combination of TWSTFT and GNSS for accurate UTC time transfer,” Metrologia, vol. 46, pp. 305–314, 2009.
    [79] BIPM Circular T 277, in BIPM ftp publications, Feb., 2011.
    [80] V. Zhang, T. Parker, D. Matsakis, J. Achkar, D. Rovera, D. Piester, A. Bauch, and L. Lorini, “Two-way satellite time and frequency transfer using 1 MChip/s codes,” in Proc. 39th PTTI Mtg., 2009, pp. 371–382.
    [81] J. W. Betz, “The offset carrier modulation for GPS modernization,” in Proc. Nat. Tech. Meeting Inst. Navigat., San Diego, 1999, pp. 639–648.
    [82] J. Amagai and T. Gotoh, “Current status of two-way satellite time and frequency transfer using a pair of pseudo random noises,” in Proc. Asia-Pacific Workshop Time Freq., 2008, pp. 267–271.
    [83] T. Gotoh and J. Amagai, “Two-way time transfer with dual pseudo-random noise codes,” in Proc. 40th PTTI Mtg., 2008, pp. 459–466.
    [84] T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU-based two-way time transfer modem,” IEEE Trans. Instrum. Meas., vol. 60, no. 7, pp. 2495–2499, Jul. 2011.
    [85] DPN Modem Operation Manual, NICT, Japan, Feb. 2010, pp. 1–6.
    [86] BIPM TAIPPP results on ftp. [Online]. Available: ftp://tai.bipm.org/TimeLink/TAIPPP.
    [87] F. G. Ascarrunz, T. E. Parker, and S. R. Jefferts, “Group-delay error due to coherent interference,” in Proc. Joint IEEE IFCS EFTF, 1999, pp. 198–202.
    [88] G. Hejc and W. Schaefer, “Tracking biases caused by imperfections in DLL receivers,” in Proc. 41st PTTI Syst. Appl. Meeting, 2009, pp. 551–558.
    [89] Corning single-mode optical fiber, http://ece466.groups.et.byu.net/notes/smf28.pdf.
    [90] Optical circulator, http://en.wikipedia.org/wiki/Optical_circulator.
    [91] Satellite Time and Ranting Equipment (SATRE), Timetech web: http://www.timetech.de/.
    [92] F. G. Ascarrunz et al., “Pseudo-random code correlator timing error due to multiple reflections in transmission lines,” 30th Annual Precise Time and Time Interval Meeting (PTTI), 1998.
    [93] D. Piester, M. Fujieda, M. Rost, A. Bauch, “Time transfer through optical fibers (TTTOF): first results of calibrated clock comparisons,” Proc. 41st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 16-19 Nov. 2009, Santa Ana Pueblo, New Mexico, USA, pp. 89-99, 2010.
    [94] D. Piester, M. Rost, M. Fujieda, T. Feldmann, A. Bauch, “Remote atomic clock synchronization via satellites and optical fibers,” Advances in Radio Science, vol. 9, pp. 1-7, 2011.
    [95] X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. B, vol. 13, pp. 1725-1735, 1996.
    [96] D. A. Howe and A. Hati, “Low-noise X-band oscillator and amplifier technologies: comparison and status,” in Proceedings of 2005 Joint Meeting IEEE International Frequency Control Symposium and Precise Time and Time Interval Systems and Applications, pp. 481-487, 2005.
    [97] X. S. Yao, L. Maleki, Y. Ji, G. Lutes, and M. Tu, “A dual-loop opto-electronic oscillator,” TMO Progress Report, 42-135, 1998, http://ipnpr.jpl.nasa.gov/progress_report/42-135/135C.pdf.
    [98] X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett., vol. 22, pp. 1867-1869, 1997.
    [99] N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett., vol. 30, pp. 1231-1233, 2005.
    [100] A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in Proceedings of 2010 IEEE International Frequency Control Symposium, pp. 554-557, 2010.
    [101] D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of 2002 IEEE International Frequency Control Symposium, pp. 580-583, 2002.
    [102] J. M. Kim and D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express, vol. 18, pp. 14905-14912, 2010.
    [103] M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag., vol. 7, no. 4, pp. 38-47, 2006.
    [104] S. Romisch, J. Kitching, E. Ferre-Pikal, L. Hollberg, and F. L. Walls, “Performance evaluation of an optoelectronic oscillator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 47, pp. 1159-1165, 2000.
    [105] N. L. Duy, L. V. H. Nam, V. V. Yem, L. Vivien, E. Cassan, and B. Journet, “Materials used for the optical section of an optoelectronic oscillator,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 1, 045008, 2010.
    [106] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications-A tutorial,” IEEE Trans. Commun., vo. 32, no. 2, pp. 855-884, 1982.
    [107] A. Bauch, D. Piester, M. Fujieda, and W. Lewandowski, “Directive for operational use and data handling in two-way satellite time and frequency transfer (TWSTFT),” Rapport BIPM-2011/01, http://www.bipm.org/utils/common/pdf/rapportBIPM/2011/01.pdf.
    [108] D. W. Allan, “Statistics of Atomic Frequency Standard,” Proc. IEEE, vol. 54, no. 2, pp. 221-231, 1966.
    [109] O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express, vol. 19, pp. 5839-5854, 2011.
    [110] T. Gotoh, J. Amagai, T. Hobiger, M. Fujieda, and M. Aida, “Development of a GPU based two-way time transfer modem,” IEEE Trans. Instrum. Meas., vol. 60, no. 7, pp. 2495-2499, 2011.
    [111] W.-H. Tseng, Y.-J. Huang, T. Gotoh, T. Hobiger, M. Fujieda, M. Aida, T. Li, S.-Y. Lin, H.-T. Lin, and K.-M. Feng, “First international two-way satellite time and frequency transfer experiment employing dual pseudo-random noise codes,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 3, pp. 531-538, Mar, 2012.
    [112] X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron., vol. 32, pp. 1141-1149, 1996.
    [113] W. H. Tseng and K. M. Feng, “Enhancing long-term stability of the optoelectronic oscillator with a probe-injected fiber delay monitoring mechanism,” Opt. Express, vol. 20, no. 2, pp. 1597-1607, 2012.
    [114] R. Adler, “A study of locking phenomena in oscillations,” Proc. of IRE, 34, 351-357 (1946), reprinted in Proc. IEEE, vol. 61, pp. 1380-1385, 1973.
    [115] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004.
    [116] Z. Jiang, G. Petit, F. Arias, W. Lewandowski, L. Tisserand, "BIPM calibration scheme for UTC time links-BIPM pilot experiment to strengthen Asia-Europe very long baselines " Proc. 2011 Joint IEEE International Frequency Control Symposium & European Frequency and Time Forum, 2-5 May 2011, San Francisco, CA, USA, pp. 1-6, 2011.
    [117] H.-T. Lin, Y.-J. Huang, W.-H. Tseng, C.-S. Liao, F.-D. Chu, “Recent development and utilization of two-way satellite time and frequency transfer,” MAPAN-Journal of Metrology Society of India, 18 April, 2012.
    [118] H.-T. Lin, Y.-J. Huang, C.-S. Liao, F.-D. Chu, W.-H. Tseng, “Improvement of the Asia-Pacific TWSTFT network solutions by using DPN results,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 3, pp. 539-544, Mar, 2012.
    [119] H.-T. Lin, F.-D. Chu, Y.-J. Huang, W.-H. Tseng, “Full utilization of TWSTT network data for the short-term stability and uncertainty improvement,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 7, pp. 2564-2569, Jul, 2011.
    [120] C.-S. Liao, F.-D. Chu, Y.-J. Huang, K.-Y. Tu, W.-H. Tseng, “Formation of a real-time time scale with Asia-Pacific TWSTFT network data,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 7, pp. 2667-2672, Jul, 2011.

    Reference for Appendix A:
    [A. 1] J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nature Photonics, vol. 2, pp. 733-736, 2008.
    [A. 2] P. Krehlik, Ł. ´Sliwczy´nski, Ł. Buczek, and M. Lipi´nski, “Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay,” IEEE Transactions on Instrumentation and Measurement, to be published, 2012.
    [A. 3] K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Optics Letters, vol. 37, no. 14, pp. 2958-2960, 2012.
    [A. 4] W.-H. Tseng and K.-M. Feng, “Impact of fiber delay fluctuation on reference injection-locked optoelectronic oscillators,” accepted by Optics Letters, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE