研究生: |
蘇珍誼 Chen-Yi Su |
---|---|
論文名稱: |
電漿活化及退火處理對直接接合矽晶圓對接合性質之影響 |
指導教授: |
胡塵滌
Chen-Ti Hu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 晶圓接合 、表面能 、電漿活化 、退火 |
外文關鍵詞: | Wafer direct bonding |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用傳統晶圓接合及氧氣電漿活化晶圓接合兩種方式接合矽晶圓對,討論電漿活化表面處理及熱處理對晶圓對接合界面之物理性質,包括接合狀態、氧化中間層厚度、表面鍵結、接合表面能強度等影響。
電漿活化接合晶圓對在退火後產生之牛頓環,為大量反應氣體泡區及降溫殘餘應力所造成;施加一真空中500 ℃之中間退火步驟,可避免晶圓對在大氣中1000 ℃退火後產生泡區,達到良好接合狀態,並同時擁有高接合表面能。氧氣電漿活化處理,使表面含大量SiOH鍵結,並且在矽晶圓表面造成約70 Å氧化層;單片矽晶圓於大氣中1000 ℃退火後,表面氧化層厚度遽增至1700 Å以上。晶圓對經大氣中1000 ℃退火,表面能皆達1800 mJ/m2以上,推測為二氧化矽中間層厚度達到一理想值所致。由本研究結果,可評估何種晶圓接合製程可得到較佳物理性質,以利晶圓接合技術更廣泛地應用。
1. Jan Haisma and G.A.C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry-Historical review in a broader scope and comparative outlook,” Materials Science and Engineering R37, pp. 1-60 (2000)
2. Lord Rayleigh, “A study of glass surface in optical concact,” Proc. Phys. Soc., A156, 326 (1936)
3. G. Wallis and D. I. Pommerantz, “Field assistd glass-metal sealing,” J. App.Phys. 40, 3946 (1969)
4. J. B. Lasky, S. R. Stiffler, F. R. White and J. R. Abernathey, IEDM Tech. Dig., 648 (IEEE, New York, 1985)
5. J. B. Lasky, “ Wafer bonding for silicon-on-insulator technologies ”, Appl. Phys. Lett. 48, pp. 78-80 (1986)
6. M. Shimbo, K. Furukawa, K. Furuda, K. Tanzawa, “ Silicon-to-silicon direct bonding method ”, J. Appl. Phys. 60(8), pp. 2987-2989 (1986)
7. Q.-T. Tong, X.-L. Xu, and H. Shen, “ Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding ”, Electronics Letters 26, pp. 697-699 (1990)
8. K.-Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, “ Stability of interfacial oxide layers during silicon wafer bonding ”, J. Appl. Phys. 65, pp. 561-563 (1989)
9. H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “ Low-temperature direct bonding of silicon and silicon dioxide by surface activation method ”, Sensors and Actuators A 70, pp. 164-170 (1998)
10. Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, pp. 294-296 (2002)
11. Jean-Pierre Colinge, “Silicon-On-Insulator Technology:Materials to VLSI”, pp. 136-138 (1997)
12. Andreas Plößl and Gertrud Kräuter, “Wafer Direct Bonding : tailoring adhesion between brittle materials”, Materials Science and Engineering, R25, p.1~88, (1999)
13. Jan Haisma and G.A.C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry. Historical review in a broader scope and comparative outlook”, Materials Science and Engineering , R37, p.1~60, (2000)
14. Martin A. Schmidt, “Wafer-to-Wafer Bonding for Microstructure Formation”, Proceedings of the IEEE, 86. No.8, p.1575, (1998)
15. T. Suni, K. Henttinen, A. Lipsanen. J. Dekker, H. Luoto, and M. Kulawski, “Wafer Scale Packaging of MEMS by Using Plasma-Activated Wafer Bonding”, Journal of The Electrochemical Society, 153 (1) G78-G82 (2006)
16. Niclas Keskitalo, Stefan Tiensuu, Anders Hallen, “ Characterization of hydrophobic bonded silicon wafers ”, Nuclear Instruments and Methods in Physics Research B 186, pp. 66-70 (2002)
17. Q.-T. TONG and U. GÖSELE, “ SEMICONDUCTOR WAFER BONDING : SCIENCE AND TECHNOLOGY ”, John Wiley & Sons Inc. (1999)
18. T. R. Chung, L. Yang, N. Hosoda, B. Takagi, T. Suga, “ Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method ”, Appl. Surf. Sci. 117-118, pp. 808-812 (1997)
19. T. R. Chung, L. Yang, N. Hosoda, T. Suga, “ Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method ”, Nucl. Instrum. Methods Phys. Res. B 121, pp. 203-206 (1997)
20. Donato Pasquariello, Martin Camacho, Klas Hjort, László Dózsa, Béla Szentpáli, “ Evaluation of InP-to-silicon heterobonding ”, Materials Science and Engineering B 80, pp. 134-137 (2001)
21. V. Lehmann, K. Mitani, R, Stengl, T. Mii and U. Gösele, “ Bubble-Free Wafer Bonding of GaAs and InP on Silicon in a Microcleanroom ”, Jap. J. Appl. Phys. 28, pp. L2141-L2143 (1989)
22. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Parker, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robbins, “ Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes ”, Appl. Phys. Lett. 64, pp. 2839-2841 (1994)
23. B. F. Levine, A. R. Hawkins, S. Hiu, B. J. Tseng, C. A. King, L. A. Gruezke, R. W. Johnson, D. R. Zolnowski, and J. E. Bowers, “ 20 GHz high performance planar Si/InGaAs p-i-n photodetector ”, Appl. Phys. Lett. 70 (18), pp. 2449-2451 (1997)
24. J. H. Wang, M. S. Jin, V. H. Ozguz, S. H. Lee, “ N-channel metal-on- semiconductor transistors fabricated in a silicon film bonded onto sapphire ”, Appl. Phys. Lett. 64, pp. 724-726 (1994)
25. Akihiko Murai, Lee McCarthy, Umesh Mishra, Steven P. DenBaars, Carsten Kruse, Stephan Figge and Detlef Hommel, “ Wafer Bonding of GaN and ZnSSe for Optoelectronic Applications ”, Jap. J. Appl. Phys. 43, pp. L1275-L1277 (2004)
26. Yoshihiro Tomita, Masato Sugimoto, and Kazuo Eda, “ Direct bonding of LiNbO3 single crystals for optical waveguides ”, Appl. Phys. Lett. 66, 1484 (1995)
27. K. Eda, M. Sugimoto, Y. Tomita, “ Direct heterobonding of lithium niobate onto lithium tantalate ”, Appl. Phys. Lett. 66, pp. 827-828 (1995)
28. Martin Alexe, Gerhard Kästner, Dietrich Hesse, and Ulrich Gösele, “ Ferroelectric-semiconductor heterostructures obtained by direct wafer bonding ”, Appl. Phys. Lett. 70, pp. 3416-3418 (1997)
29. Q.-Y. Tong, R. Gafiteanu, U. M. Gösele, “ Reversible Silicon Wafer Bonding for Surface Protection: Wafer-Enhanced Debonding ”, J. Electrochem. Soc. 139, pp. L101-L102 (1992)
30. T. R. Chung, L. Yang, N. Hosoda, B. Takagi, T. Suga, “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method” , Appl. Surf. Sci. 117-118, p. 808, (1997)
31. H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung and T. Suga, “ Surface activated bonding of silicon wafers at room temperature ”, Appl. Phys. Lett. 68 (16), pp. 2222-2224 (1996)
32. Hideki Takagi, Ryutaro Maeda, Teak Ryong Chung, Naoe Hosoda and Tadatomo Suga, “ Effect of Surface Roughness on Room-Temperature Wafer Bonding by Ar Beam Surface Activation ”, Jpn. J. Appl. Phys. 37, pp. 4197-4293 (1998)
33. Hideki Takagi, Ryutaro Maeda, Naoe Hosoda and Tadatomo Suga, “ Room-Temperature Bonding of Si Wafers to Pt Films on SiO2 or LiNbO3 Substrates Using Ar-Beam Surface Activation ”, Jpn. J. Appl. Phys. 38, pp. L1559-L1561 (1999)
34. Hideki Takagi, Ryutaro Maeda, Tadatomo Suga, “ Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature ”, Sensors and Actuators A 105, pp. 98- 102 (1997)
35. T. Suni, K. Henttinen, I. Suni and J. Mäkinen, “ Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2 ”, J. Electrochem. Soc. 149, pp. G348-G351 (2002)
36. Xuanxiong Zhang and Jean-Pierre Raskin, “ Low-temperature Wafer Bonding - Optimal O2 Plasma Surface Pretreatment Time ”, Electrochemical and Solid-State Letters 7(8), pp. G172-G174 (2004)
37. 汪建民 主編, “材料分析”,中國材料科學學會,材料科學叢書2 (1998)
38. Dieter K. Schroder, “Semiconductor material and devise characterization”, John Wiley & Sons, Inc. 2nd edition (1998)
39. W. P. Masara, G. Goetz, A. Caviglia, and J. B. McKitterick, “ Bonding of silicon wafers for silicon-on-insulator ”, J. Appl. Phys. 64 (10), pp. 4943-4950 (1998)
40. Y. Bertholet, F. Iker, J.-P. Raskin, and T. Pardoen, “Steady-state measurement and modeling of wafer bonding failure resistance,” Sens. Actuators A, Phys., vol. 110, pp. 157–163 (2004)
41. 王品然,國立清華大學材料所碩士論文,”晶圓接合技術應用於絕緣層上矽結構之研究”,民國九十三年六月
42. Q.-Y. Tong, G. Kaido, L. Tong, M. Reiche, F. Shi, J. Steinkirchner, T. Y. Tan, and U. Gosele, “A simple chemical treatment for preventing thermal bubbles in silicon wafer bonding,” J. Electrochem. Soc., vol. 142, pp. L201-L203 (1995)
43. A. Weinert, P. Amirfeiz, and S. Bengtsson, “Plasma assisted room temperature boding for MST,” Sens. Actuators A, Phys., vol. 92, pp. 214–222 (2001)
44. D. Pasquariello, M. Lindeberg, C. Hedlund, and K. Hjort, “Surface energy as a function of self-bias voltage in oxygen plasma wafer bonding,” Sens. Actuators A, Phys., vol. 82, pp. 239–244 (2000)
45. D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damage in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc., vol. 147, no. 7, pp. 2699–2703 (2000)
46. M.Wiegand, M. Reiche, and U. Gösele, “Time-dependent surface properties and wafer bonding of O -plasma-treated silicon (100) surfaces, ”J. Electrochem. Soc., vol. 147, pp. 2734–2740 (2000)
47. A. Sanz-Velasco, P. Amirfeiz, S. Bengtsson, and C. Coling, “Room temperature wafer bonding using oxygen plasma treatment in reactive ion etchers with and without inductively coupled plasma,” J. Electrochem. Soc., vol. 150, pp. G155–G162, 2003.
48. S. N. Farrens, J. R. Dekker, J. K. Smith, and B. E. Roberds, “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., vol. 142, no. 11, pp. 3949–3955, 1995.
49. P. Amirfiez, S. Bengtsson, M. Bergh, E. Zanghellini, and L. Borjesson, “Formation of Silicon Structures by Plasma-Activated Wafer Bonding,” J. Electrochem. Soc., vol. 147, no. 7, pp. 2693–2698 (1995)
50. Xuan Xiong Zhang and Jean-Pierre Raskin, Member, IEEE, “Low-Temperature Wafer Bonding:A study of Void Formation and Influence on Bonding Strength,” Journal of Microelectromechanical Systems, vol. 14, no. 2, pp. 368-382 (2005)
51. Robert C. Weast, “Handbook of Chemistry and Physics,” 1st student edition, CRC Press, Inc. (1987)
52. Handbook, 竹齊科技
53. Hubert Moriceau, Francois Ricutord, Christophe Morales, and Anne Marie Charvet, “Surface plasma treatments enabling low temperature direct bonding,” Microsyst Technol 12: 378-382 (2006)
54. A. Weinert, P. Amirfeiz, and S. Bengtsson, “Plasma assisted room temperature boding for MST,” Sens. Actuators A, Phys., vol. 92, pp. 214–222 (2001)
55. D. Pasquariello, C. Hedlund, and K. Hjort, “Oxidation and induced damage in oxygen plasma in situ wafer bonding,” J. Electrochem. Soc., vol. 147, no. 7, pp. 2699–2703 (2000)
56. Robert E. Reed-Hill, “Physical Metallurgy Principles”, pp. 364 (1991)
57. N. Miyata, M. Shigeno, Y. Arimoto, and T. Ito, “Thermal decomposition of native oxide on Si (111),” J. Appl. Phys., 74, 5275 (1993)
58. Dieter K. Schroder, “Semiconductor material and devise characterization”, John Wiley & Sons, Inc. 2nd edition (1998)
59. Canaria, Christie A., Lees, Inez N., Wun, Aetna W., Miskelly, Gordon M., Sailor, Michael J., “Characterization of the carbon-silicon stretch in methylated porous silicon-observation of an anomalous isotope shift in the FTIR spectrum”, Inorganic Chemistry Communications 5(8), p.560, (2002)
60. C. Y. Wang, J. Z. Zheng, Z. X. Shen, Y. Lin, A. T. S. Wee, “Elimination of O2 plasma damage of low-k methyl silsesquioxane film by As implantation”, Thin solid film 397, p.90, (2001)
61. S. Kalem, D.Göbelek, R. Kurtar, Z. Misirh, “The effects of surface treatment on optical and vibrational properties of stain-etched silicon”, NanoStructured Materials 6, p.847, (1995)
62. J.R. During, Applications of FT-IR spectroscopy, Amsterdam, Elsevier, (1990)
63. Q.-Y. Tong, G. Cha, R. Gafiteanu, and U. Gösele, “Low temperature wafer direct bonding,” J. Microelectromech. Syst., vol. 3, pp. 29–35 (1994)
64. A. Weinert, P. Amirfeiz, S. Bengtsson, “Plasma assisted room temperature bonding for MST,” Sensors and Actuators, A 92, pp. 214-222 (2001)