簡易檢索 / 詳目顯示

研究生: 柯志晟
Chin Cheng Ko
論文名稱: 多重閘極之複晶矽薄膜電晶體暨SONOS非揮發性記憶體的製作與研究
Fabrication and Investigation of Multiple Gate Polycrystalline Thin-Film Transistors Combined with Nonvoltile SONOS Memory
指導教授: 楊士禮
Sidney Yang
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 62
中文關鍵詞: 多重閘極非揮發性記憶體
外文關鍵詞: multiple gate, non-voltile memory
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們提出了多層閘極介電質結合奈米線多通道與Π型閘極結構的薄膜電晶體之結構,此結構具有高性能薄膜電晶體的特性,另一方面,也同時具有非揮發性記憶體的特性。
    在薄膜電晶體方面,我們利用奈米線多通道結合Π型閘極結構的薄膜電晶體之結構,在施加相同閘極電壓的情況下,提高閘極的控制能力;在奈米線多通道方面,因為奈米線在邊緣處的曲率半徑較小,在相同電壓下,有較大的電場之特性;在Π型閘極結構方面,因為Π型閘極結構可以控制的有效通道寬度與通道邊緣處的數目較多,在相同電壓下,在通道裡有較多的載子數與較多的高電場奈米線邊緣處之特性。製作出多通道奈米線結合Π型閘極結構的薄膜電晶體,可以有效的降低導通電壓(threshold voltage),增加開關電流比(On/Off ratio),較陡峭的次臨界導通斜率(subthreshold slope),和更優良的元件驅動能力,其電性較一般標準結構的薄膜電晶體為好。
    在非揮發性記憶體方面,由於Π型閘極結構具有較大的有效通道寬度與較多的高電場奈米線邊緣處,可以使元件在進行寫入/抹除(Program/Erase)的操作時,具有較高的效率,另一方面,奈米線結合Π型閘極結構的非揮發性記憶體,無論是在資料的保存性(Reliability)方面,或是多次讀寫(Endurance)方面,具有良好元件可靠度。
    多重閘極奈米線薄膜電晶體有極大的潛力應用在面版上的系統整合,利用多重閘極奈米線薄膜電晶體同時具有高效能驅動元件及非揮發性記憶體元件的特性,可以大幅的簡化製程步驟。


    In this thesis, we proposed the thin film transistor with multi-layered gate dielectric and multiple nanowire channel combined with Pi gate structure, this structure has the high performance in thin film transistor characteristic. On the other hand, also simultaneously has the non-volatile memory characteristic.
    In the thin film transistor aspect, we employ the thin film transistor with multiple nanowire channel combined with Pi gate structure, in the same gate pole bias situation, it enhanced the gate extremely control ability; In multiple nanowire channel aspect, because the radius of curvature in the edge is smaller. Under the same gate voltage, it has characteristic of the larger electric field; In Pi gate structure aspect, because the Pi gate structure may control extremely the effective channel width and the channel edge number are more. Under the same gate voltage, it has more carries in the channel and the more high electric field edge characteristic. The thin film transistor with multiple nanowire channel combined with Pi gate structure was manufactured, it may effective reduce the threshold voltage, increases the switch current ratio (On/Off ratio), the steeper subthreshold slope, and the superior driving ability. Its electric properties is ordinary the standard structure the thin film transistor for good.
    In non-volatile memory aspect, because the Pi gate structure has the larger extremely effective channel width with the more high electric field edge in nanowire channel, it may have the high efficiency when carries on Program/Erase operation. On the other hand, the non-volatile memory characteristics with multiple nanowire channel combined with Pi gate structure, however in the material durable (Reliability) aspect, perhaps the read-write (Endurance) aspect, has the good device reliability.
    The thin film transistor with multi-layered gate dielectric and multiple nanowire channel combined with Pi gate structure has the enormous potential application extremely on the system on plane conformity. The use of the thin film transistor multi-layered gate dielectric and multiple nanowire channel combined with Pi gate structure simultaneously has the extremely high the driving efficiency and the non-volatile memory characteristic, it may the large simplification system manufacture step.

    Contents Chapter 1 Introduction 1-1. Polycrystalline Silicon Thin-Film Transistor……………………………….1 1-2. Non-volatile Memory Technology…………………………………………...2 1-3. SONOS Nonvolatile Memory Devices………………………………………5 1-4. Motivation…………………………………………………………………….8 Chapter 2 Basic Mechanisms of Poly-Si TFTs 2-1 Physics of poly-Si TFTs……………………………………………...……...14 2-2 Semi-empirical Poly-Si TFTs Model……………………………………….16 2-1 Kink Effect………………………………...……………………………...…17 Chapter 3 Basic Mechanisms of Nonvolatile Memory 3-1 Physics of Nonvolatile Memory…………………………………………….23 3-2 Basic Program/Erase Mechanisms………………………………………...25 3-1 Basic Reliability of Nonvolatile Memory……………………………….…28 Chapter 4 Experiment and Result 4-1 Introduction…………………………………………………………………35 4-2 The Fabrication of SONOS-TFT………………………………………..…35 4-3 The Results and Discussions of SONOS-TFT…………………………….36 4-4 The Results and Discussions of SONOS Nonvolatile Memory…………..39 4-1 Summary……………………………………………………………………41 Chapter 5 Conclusion 5-1 Conclusion…………………………………………………………………...54 Reference

    Chapter 1
    [1] H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989
    [2] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001
    [3] H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
    [4] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
    [5] K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991
    [6] T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
    [7] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, pp. 563, 1991.
    [8] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFET's,” IEEE Trans. Electron Devices, vol. 40, pp. 2326-2329, Dec. 1993.
    [9] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios and R. Chau., “High Performance Fully-Depleted Tri-Gate CMOS Transistors ,”IEEE Trans. Electron Device Lett., vol. 24, pp. 263-265, Apr., 2003.
    [10] N.Lindert, L Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T. J. King, J. Bokor, and C. Hu., “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Trans. Electron Device Lett., vol. 22, pp. 487-489, Oct., 2001.
    [11] S. Miyamoto, S. Maegawa, S. Maeda, T. Ipposhi, H. Kuriyama, T. Nishimura, and N. Tsubouchi, “Effect of LDD structure and channel poly-Si thinning on a gate-all-around TFT (GAT) for SRAM's,” IEEE Trans. Electron Devices, vol. 46, pp. 1693-1698, Aug. 1999.
    [12] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 504 (1981)
    [13] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).
    [14] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
    [15] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
    [16] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, 16, 22 (2000).
    [17]H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
    [18] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
    [19] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., 18, 278 (1997).
    [20] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
    [21] Barbara De Salvo, Cosimo Gerardi, Rob van Schaijk, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps”, IEEE TRANS. ON DEVISE AND MATERIALS RELIABILITY, VOL. 4, NO. 3, SEPTEMBER 2004.
    [22] White MH, Adams D, Bu J. On the Go with SONOS. IEEE Circ Dev Mag 2000;16(4):22.
    [23] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Fromeer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Electron Device Lett., vol. 21, pp. 543–545, Nov. 2000.
    [24] Y. Yang, A. Purwar, and M. H. White, Solid-State Electronics, 43, 2025, (1999).
    [25] M. She, T. J. King, C. Hu, W. Zhu, Z. Luo, J. P. Han, and T. P. Ma, “JVD silicon nitride as tunnel dielectric in p-channel flash memory”, IEEE Electr. Device Lett., 23, 91 (2002).
    [26] H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, Symp. on VLSI Tech. Dig., 9A-2, 113 (1997).
    [27] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Electr. Device Lett., 21, 543 (2000).
    [28] M. L. French, C. Y. Chen, H. Sathianathan, and M. H. White, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 17, 390 (1994).
    Chapter 2
    [1] M. Shur, Physics of Semiconductor Device, New Jersey: Prentice Hall, Inc.,1990
    [2] K. Lee, M.Shur, T. A. Fjeldly and T. Ytterdal, Semiconductor Device Modeling for VLSI, Prentice-Hall, 1993
    [3] T. A. Fjeldly, T. Ytterdal and M. Shur, Introduction to Device Modeling and Circuit Simulation, New York: John Wiley & Sons, 1998
    [4] B. Iniguez, T. A. Fjeldly, T. Ytterdal and M. Shur, “Thin Fim Transistor Modeling,” Silicon and Beyond: Advance Device Models and Circuit Simulation, World Scientific, Singapore, 33-54, 2000
    [5] J. Levinson et al., “Conductivity behavior in polycrystalline semiconductor thin film transistor” J. Appl. Phys., 53,pp. 1193-1202, 1982
    [6] J. G. Fossum, A . Ortiz-Conde, H. Schichijo and S. K. Banerjee, “Efects of grain boundaries on the channel conductance of SOI MOSFETs” IEEE Trans. IEEE Trans. Electron Devices, 30, pp. 993-940, 1983
    [7] G-Y. Yang, S-H. Hur and C-H. Han, “A Physical-Based Analytical Turn-On Model of Polysilicon Thin-Film Transistor for Circuit Simulation”, IEEE Trans. Electron Devices, 46, pp. 165-172, 1999
    [8] F. V. Farmakis, J. Brini, G Kamarinos, Constantinos T. Angelis, Charalambos A. Dimitriadis, Member, IEEE, and M. Miysaska, “On-Curent Modeling of Large-Grain Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. on Electron Devices, 48, pp. 701-706, 2001
    [9]

    Chapter 3
    [1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
    [2] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59.
    [3] S. M. Sze, J. Appl. Phys. 38, 2951 (1967).
    [4] Min She, “Semiconductor Flash Memory Scaling”.
    [5] Marvin H. White, Yang (Larry) Yang, Ansha Purwar, and Margaret L. French, “A Low Voltage SONOS Nonvolatile Semiconductor Memory Technology”, IEEE, VOL.20, NO. 2, JUNE 1997
    [6] J. Bu, M. H. White, Solid-State Electronics., 45, 113 (2001)
    [7] M. L. French, M. H. White., Solid-State Electron., p.1913 (1995)
    [8] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White., IEEE Trans Comp
    Pack and Manu Tech part A., 17, 390 (1994)
    [9] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, IEDM Tech. Dig., p.19 (1993)
    [10] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Transactions of Electron Devices., 49, 1606 (2002)
    [11] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, (1964)
    [12] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969)
    [13] Christer Sevensson and Ingemar Lundstrom, J. Appl. Phys., 44, 4657 (1973)
    [14] P. E. Cottrell, R. R. Troutman, and T. H. Ning, IEEE J. Solid-State Circuits, 14, 442 (1979)
    [15] San, K.T.; Kaya, C.; Ma, T.P.; “Effects of erase source bias on flash EPROM device reliability” Electron Devices, IEEE Transactions on Volume 42, Issue 1, Jan. 1995 Page(s):150-159
    [16] Steve S. Chung, Cherng-Ming Yih, Shui-Ming Cheng, and Mong-Song Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/Erase Cycles”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 9, SEPTEMBER 1999 1883
    [17] Suk-Kang Sung, I1-Han Park, Chang Ju Lee, Yong Kyu Lee, Jong Duk Lee, Byung-Gook Park, Soo Doo Chae, and Chung Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices, ” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL.2, NO.4, DECEMBER 2003
    [18] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
    [19] J. De Blauwe, M. Ostraat, M. Green, G. Weber, T. Sorsch, A. Kerber, F. Klemens, R. Cirelli, E. Ferry, J. L. Grazul, F. Baumann, Y. Kim, W. Mansfield, J. Bude, J. T. C. Lee, S. J. Hillenius, R. C. Flagan, and H. A. Atwater, “A novel, aerosol-nanocrystal floating-gate device for nonvolatile memory applications”, in IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., 2000, pp. 683–686.
    [20] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE Trans. Electron Devices, vol. 43, pp. 1553–1558, Sept. 1996.
    [21] Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-x Ge ,” IEEE Trans. Electron Devices, vol. 48, pp. 696–700, Apr. 2001.

    Chapter 4
    [1] Jong-Tae Park and Jean-Pierre Colinge, “Multiple-Gate SOI MOSFETs:Device Design Guidelines”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 12, DECEMBER 2002
    [2] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Y.C. Wu, C.C. Tsai, T.S. Chang and Chen-Hsin Lien, “High-performance polycrystalline silicon thin-film transistors with oxide–nitride–oxide gate dielectric and multiple nanowire channels ”, Thin Solid Films, 2006
    [3] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, “Tri-gate fully depleted CMOS transistors: Fabrication, design, and layout,” in Proc. VLSI Tech. Symp., pp. 133 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE