研究生: |
林俊廷 Lin, Jun-Ting |
---|---|
論文名稱: |
不同食鹽晶體作為光刺激發光輻射劑量計之特性研究 Study on the Characteristics of Different Salt Crystals Applying as Optically Stimulated Luminescent Radiation Dosimeters |
指導教授: |
許靖涵
Hsu, Ching-Han 許芳裕 Hsu, Fang-Yuh |
口試委員: |
陳拓榮
Chen, Tou-Rong 游澄清 Yu, Cheng-Ching |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 食鹽 、氯化鈉 、光刺激發光劑量計 、輻射度量 |
外文關鍵詞: | salt, NaCl, OSLD, radiation measurement |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在於探討食鹽(氯化鈉)作為光刺激發光劑量計(OSLD)測量輻射之材料分析以及量測條件最佳化。目前OSLD最常使用的材料為Al2O3:C,其具有成本較高的缺點,故開發較具成本效益之替代材料為近年輻射度量研究的重要議題。本研究以日常生活中易取得的食鹽作為實驗樣本,包含碘鹽、分析級鹽、岩鹽、湖鹽以及黑鹽,藉由計讀儀之開發並運用光刺激發光技術進行輻射特性計測,評估食鹽之再現性、均勻性、重複計讀特性、劑量響應、回火、消光等特性,了解食鹽成分中各種不同微量元素含量對於OSL特性的影響。
實驗結果顯示食鹽具良好的光子輻射劑量響應;食鹽晶格中參雜異原子具有提升重複計讀特性的效果,但會導致OSL訊號量降低。食鹽應用於光刺激發光輻射度量之技術,可從回火速率了解食鹽晶體對可見光極為敏感,故使用此種技術需將食鹽晶體密封以隔絕外界光源;消光實驗結果顯示,食鹽晶體應於曝露輻射後放置特定時間始能計讀,藉以避免訊號高估。
最終結果顯示湖鹽具有最佳的重複計讀特性和劑量響應,而分析級鹽和岩鹽因其再現性及均勻性不佳導致其實驗結果不穩定,黑鹽則因雜質量過高導致OSL訊號極低,最不適合用於輻射量測。
This study is aimed to analyze and optimize of applying salt (NaCl) material as optical stimulated luminescent dosimeters (OSLDs). One of the disadvantages of commercialized OSLD material, Al2O3: C, is highly costed, a substitutional choice thus getting popular in the field of radiation dosimeter study.
Herein, easily available salts in our daily life including iodine salt (NaCl(I)), analytical NaCl (NaCl(A)), rock salt (NaCl(R)), lake salt (NaCl(L)) and black salt (NaCl(B)) were studied with their reproductivity, homogeneity, repeatability, dose-response, annealing and fading properties, to dig out the effect of trace impurities on OSL properties.
NaCl(A) show good dose-response correlation, and heterogeneous doping could effectively enhance the reproductivity of NaCl dosimeter with some response drop. For applying salts as OSLD materials, annealing experiment show they are sensitive to visible light, and fading experiment show OSL response would be stabilized for a certain period; thus, sealing in dark at least for a period is needed for a NaCl OSLD after the exposure of radiation.
The result show NaCl(L) has the best repeatability and dose-response correlation; NaCl(A) and NaCl(R) might not be proper materials owing to poor stability of reproductivity and homogeneity. NaCl(B) show the least potential OSL material owing to lowest dose response, which may be caused by high impurity contents.
Scarboro, S. B.; Cody, D.; Alvarez, P.; Followill, D.; Court, L.; Stingo, F. C.; Zhang, D.; McNitt-Gray, M.; Kry, S. F., Characterization of the nanoDot OSLD dosimeter in CT. Med Phys 2015, 42 , 1797-1807.
2. Freudenberger, J.; Hell, E.; Knupfer, W., Perspectives of medical X-ray imaging. Nucl Instrum Meth A 2001, 466 , 99-104.
3. Toshito, T.; Omachi, C.; Kibe, Y.; Sugai, H.; Hayashi, K.; Shibata, H.; Yasui, K.; Tanaka, K.; Yamamoto, T.; Yoshida, A.; Nikawa, E.; Asai, K.; Shimomura, A.; Okumura, I.; Suzuki, T.; Kinou, H.; Isoyama, S.; Ogino, H.; Iwata, H.; Shibamoto, Y.; Mizoe, J., A proton therapy system in Nagoya Proton Therapy Center. Australas Phys Eng S 2016, 39 , 645-654.
4. Sakurai, Y.; Tanaka, H.; Takata, T.; Fujimoto, N.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kondo, N.; Narabayashi, M.; Nakagawa, Y.; Watanabe, T.; Ono, K.; Maruhashi, A., Advances in Boron Neutron Capture Therapy (BNCT) at Kyoto University - From Reactor-based BNCT to Accelerator-based BNCT. J Korean Phys Soc 2015, 67 , 76-81.
5. Elashmawy, M., Study of constraints in using household NaCl salt for retrospective dosimetry. Nucl Instrum Meth B 2018, 423, 49-61.
6. El-Faramawy, N.; Chopra, V.; Rawash, S.; Abd El-Hafez, A.; Dhoble, S. J., Response of TLD-600/TLD-700 and CR-39 to neutrons for medical dosimetry. Luminescence 2021, 36 , 1257-1264.
7. Scarboro, S. B.; Cody, D.; Stingo, F. C.; Alvarez, P.; Followill, D.; Court, L.; Zhang, D.; McNitt-Gray, M.; Kry, S. F., Calibration strategies for use of the nanoDot OSLD in CT applications. J Appl Clin Med Phys 2019, 20 , 331-339.
8. Spooner, N. A.; Smith, B. W.; Williams, O. M.; Creighton, D. F.; McCulloch, I.; Hunter, P. G.; Questiaux, D. G.; Prescott, J. R., Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry. Radiat Meas 2011, 46 , 1856-1861.
9. Bernhardsson, C.; Christiansson, M.; Mattsson, S.; Raaf, C. L., Household salt as a retrospective dosemeter using optically stimulated luminescence. Radiat Environ Bioph 2009, 48 , 21-28.
10. Vargas, C. S., OPTICALLY STIMULATED LUMINESCENCE DOSIMETRY USING Al2O3:C MICRO CRYSTALS. University of Limoges Faculty of Sciences and Technology Master in Advance Ceramic Materials 2011.
11. Jursinic, P. A., Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose. Med Phys 2010, 37 , 132-140.
12. Musa, Y.; Hashim, S.; Bradley, D. A.; Karim, M. K. A.; Hashim, A., Reproducibility assessment of commercial optically stimulated luminescence system in diagnostic X-ray beams. J Radioanal Nucl Ch 2017, 314 , 2029-2036.
13. Mrcela, I.; Bokulie, T.; Izewska, J.; Budanec, M.; Frobe, A.; Kusic, Z., Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in Co-60 beams. Phys Med Biol 2011, 56 , 6065-6082.
14. Alothmany, N.; Molla, N. I.; Yusuf, M.; Saoudi, A.; Mail, N.; Alothmany, D.; Khafaji, M. A.; Natto, H.; Tayeb, M.; Nadwi, F.; Jiman, A.; Kinsara, A. A., Characterization of optically stimulated luminescence for assessment of breast doses in mammography screening. Radioprotection 2016, 51 , 51-58.
15. Al-Senan, R. M.; Hatab, M. R., Characteristics of an OSLD in the diagnostic energy range. Med Phys 2011, 38 , 4396-4405.
16. 林楷儒, 應用氯化鈉晶體光刺激發光特性於光子劑量評估之可行性研究. 國立清華大學碩士論文 2020.
17. Roman-Lopez, J.; Lopez, Y. I. P.; Cruz-Zaragoza, E.; Marcazzo, J., Optically stimulated luminescence of natural NaCl mineral from Dead Sea exposed to gamma radiation. Appl Radiat Isotopes 2018, 138, 60-64.
18. BotterJensen, L.; Larsen, N. A.; Markey, B. G.; McKeever, S. W. S., Al2O3:C as a sensitive OSL dosemeter for rapid assessment of environmental photon dose rates. Radiat Meas 1997, 27 , 295-298.
19. Akselrod, M. S.; Kortov, V. S.; Kravetsky, D. J.; Gotlib, V. I., Highly Sensitive Thermoluminescent Anion-Defective Alpha-Al2O3:C Single-Crystal Detectors. Radiat Prot Dosim 1990, 32 , 15-20.
20. Umisedo, N. K.; Yoshimura, E. M.; Gasparian, P. B. R.; Yukihara, E. G., Comparison between blue and green stimulated luminescence of Al2O3:C. Radiat Meas 2010, 45 , 151-156.
21. Bernhardsson, C.; Christiansson, M.; Raaf, C.; Mattsson, S., OSL IN HOUSEHOLD SALT (NaCl) FOR ENVIRONMENTAL, OCCUPATIONAL AND MEDICAL DOSIMETRY. Med Phys Baltic Stat 2009, 65-68.
22. Bailey, R. M.; Adamiec, G.; Rhodes, E. J., OSL properties of NaCl relative to dating and dosimetry. Radiat Meas 2000, 32 , 717-723.
23. Bernhardsson, C.; Waldner, L.; Vodovatov, A., Advancements in Prospective Dosimetry with Nacl Read-out by Optically Stimulated Luminescence. Medical Physics in the Baltic States 2017, 26-29.
24. Nanto, H.; Usuda, T.; Murayama, K.; Sokooshi, H.; Nakamura, S.; Inabe, K.; Takeuchi, N., Photostimulable Transparent Nacl-Cu Single-Crystals for 2-Dimensional X-Ray-Imaging Sensors. Appl Phys Lett 1991, 59 , 1838-1840.
25. Nanto, H.; Usuda, T.; Sokooshi, H.; Nakamura, S.; Inabe, K.; Takeuchi, N., Optically Stimulated Luminescence in Cu-Doped Sodium-Chloride Single-Crystal for a High-Quality X-Ray-Imaging Sensor. Sensor Actuat B-Chem 1993, 10 , 197-201.
26. Chen, L. Y.; Hsu, C. H.; Hsu, F. Y., Development and efficacy testing of a new optically stimulated luminescence ring dosimeter and algorithm. Radiat Meas 2019, 124, 109-115.
27. Waldner, L.; Raaf, C.; Hinrichsen, Y.; Herrnsdorf, L.; Bernhardsson, C., Experimentally determined and Monte Carlo-calculated energy dependence of NaCl pellets read by optically stimulated luminescence for photon beams in the energy range 30 keV to 1.25 MeV. J Radiol Prot 2020, 40 , 1321-1335.
28. Botterjensen, L.; Duller, G. A. T., A New System for Measuring Optically Stimulated Luminescence from Quartz Samples. Nucl Tracks Rad Meas 1992, 20 , 549-553.
29. Huntley, D. J.; Godfreysmith, D. I.; Thewalt, M. L. W., Optical Dating of Sediments. Nature 1985, 313 , 105-107.
30. McKeever, S. W. S.; Moscovitch, M., On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiat Prot Dosim 2003, 104 , 263-267.
31. Niwa, T.; Kawai, H.; Morishima, H.; Koga, T., Preparation of Single-Crystal Lif Tld and Its Characteristics. J Atom Energ Soc Jpn 1993, 35 , 1098-1102.
32. Walnder, L., NaCl pellets for improved dosimetry. Department of Medical Radiation Physics, Clinical Sciences, Lund University 2017.
33. McKeever, S. W. S., Thermoluminescence of Solids. Cambridge University Press 1988.
34. Stoddard, Effects of illumination upon NaCl thermoluminescence. Physical Review 1960.
35. Christiansson, M.; Bernhardsson, C.; Geber-Bergstrand, T.; Mattsson, S.; Raaf, C. L., Household salt for retrospective dose assessments using OSL: signal integrity and its dependence on containment, sample collection, and signal readout. Radiat Environ Bioph 2014, 53 , 559-569.
36. Ganguli, M.; Tobian, L., In Shr Rats, Dietary Potassium Determines Nacl Sensitivity in Nacl-Induced Rises of Blood-Pressure. Clin Exp Hypertens A 1991, 13 , 677-685.
37. Hernandez-Medina, A.; Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M., The effect of doses, irradiation temperature, and doped impurities in the thermoluminescence response of NaCl crystals. Radiat Meas 2013, 56, 369-373.
38. Bray, H. E.; Bailey, R. M.; Stokes, S., Quantification of cross-irradiation and cross-illumination using a Riso TL/OSL DA-15 reader. Radiat Meas 2002, 35 , 275-280.
39. https://www.luxeonstar.com/.
40. https://www.edmundoptics.com/p/u-340-uv-254mm-dia-colored-glass-bandpass-filter/6866/.
41. https://www.hamamatsu.com/jp/en/product/optical-sensors/pmt/related-documents.html.
42. Majgier, R.; Biernacka, M.; Smyka, R.; Mandowski, A., Analysis of OSL decay characteristics for beta-irradiated potassium chloride samples. Radiat Meas 2017, 106, 67-72.
43. Yukihara, E. G.; McKeever, S. W. S., Optically stimulated luminescence (OSL) dosimetry in medicine. Phys Med Biol 2008, 53 , R351-R379.
44. Jursinic, P. A., Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys 2007, 34 , 4594-4604.
45. Reft, C. S., The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys 2009, 36 , 1690-1699.
46. P. L. Roberson , R. D. C., Determining the lower limit of detection for personnel dosimetry systems. Health Phys. 1992, 62, 2-9.